«Дубинки» межконтинентального значения. Пистолет, приставленный к виску

В массовом сознании, особенно российском, тот факт что запуск первого искусственого спутника Земли (ИСЗ) был произведен Советским Союзом выглядит едва ли не как историческая неизбежность -- ссобенно с учетом провального первого запуска американского ИСЗ, и американского же отставания в пилотируемой космонавтике в первой половине шестидесятых годов. Мало кто осознает, насколько американцы (а точнее команда Вернера фон Брауна) были близки к запуску первого в мире спутника.

Итак, в первой половине пятидесятых годов, в США относительно независимо развивалось сразу три семейства баллистических ракет. ВВС работали над программой Atlas, армия (т.е. сухопутные силы) работала над программой Redstone, а в ВМФ шла работа над Vanguard -- последняя была развитием ракеты Viking, сделанной в сороковых Glenn L. Martin Co.

Над баллистической ракетой Redstone работала команда Вернера фон Брауна. Эта оперативно-тактическая ракета имела длину 21.1м, диаметр 1.78 м и массу в 27.8 тонн.


Головная часть Redstone отделялась для увеличения дальности стрельбы. Ракета была оснащена жидкостным ракетным двигателем Rocketdyne NAA75-100 на этаноле и жидком кислороде, с тягой 347 кН.

В середине пятидесятых годов, администрация США объявила, что в рамках Международного Геофизического Года 1957-1958 американцы запустят первый в мире ИСЗ. Предложенный Брауном на основе Redstone и Vanguard совместный проект армии и ВМФ (Project Slug / Project Orbiter), был рассмотрен и отвергнут в пользу задумавшегося сугубо гражданским по назначению Vanguard -- 29 июля 1955 года было обявлено что именно эта ракета выведет первый ИСЗ в 1957 году. Администрация Эйзенхаура не хотела запускать первый ИСЗ на "боевой" ракете, и также не хотела отдавать эту честь команде, костяком которой были бы немецкие инженеры, работавшие в прошлом в нацистской Германии.

Разочарованный фон Браун (второй справа на снимке внизу, по центру Оберт) продолжил трудиться в армии над следующим поколением боевых баллистических ракет. Созданная 1 февраля 1956 года агенство Army Ballistic Missile Agency начало разработку МБР под кодовым названием Jupiter, "Юпитер".

Jupiter-C (Composite Re-entry Test Vehicle) представлял из себя модифицированный Redstone, с удлиненной первой ступенью, и двумя дополнительными ступенями. Вторая ступень состояла из одинадцати Thiokol Baby Sergeant твердотопливных двигателей (те были уменьшенными в три раза копиями двигателя MGM-29 Sergeant), третья ступень состояла из трех таких двигателей.

Во второй половине 1956 года должен был состоятся первый испытательный пуск этой ракеты с мыса Канаверал. В качестве полезной нагрузки на ракету собирались ставить макет спутника с четвертой ступенью, состоявшей из еще одного ТТ двигателя Baby Sergeant -- фон Браун так и не отказался от попытки создать первую в мире космическую ракету-носитель. Однако администрация Белого дома совершенно заслуженно подозревала Брауна в том, что он втихую попытается обогнать Vanguard на пути в космос. После нагоняя из Пентагона, глава ABMA генерал Медарис позвонил фон Брауну, и приказал ему лично убедиться в том, что четвертая ступень на ракете будет инертной. В результате топливо двигателя на четвертой ступени было заменено на песочный балласт.

Ракета с кодовым обозначением "UI" и бустером Redstone #27 была запущена 20 сентября 1956 года, достигнув рекордных в то время высоты в 1097 километров, и дальности в 5472 километров.

Габаритно-весовой макет четвертой ступени не добрал до орбитальной скорости всего несколько сот метров в секунду. Тем самым была успешно продемонстрирована возможность вывести первый ИСЗ с помощью Jupiter-C. Собственно, если бы четвертая ступень была активной, и отработала бы успешно (шансы чего были весьма высоки, благо она была самой простой во всей связке), то космическая эра началась бы еще в сентябре 1956 года.

Однако администрация Эйзенхауэра была по-прежнему настроена на первый запуск ИСЗ на Vanguard. В "благодарность" за успешный пуск Jupiter-C, через два месяца 1956 года министр обороны США Вилсон вообще запретил ABMA пускать ракеты на дальность превышающую 200 километров (!) -- ракеты большей дальности должны были стать прерогативой ВВС. Приказ этот, насколько я понимаю, де-факто проиигнорировали, но он отлично демонстрирует настроения, царившие в то время в высшем эшелоне политического руководства США.

Тем временем, в августе 1957 года советская Р-7 (№8Л) впервые успешно выполнила намеченный план полета, нормально пройдя весь активный участок полёта и достигнув заданного района в восьми тысяча километрах от места запуска. Королев немедленно направил в ЦК запрос о разрешении на использование двух ракет Р-7 для эспериментального пуска простейшего спутника ПС-1, разработка которого началось в ноябре 1956 года, и получил согласие на то со стороны Н. С. Хрущёва. 2 октября Королёвым был подписан приказ о лётных испытаниях ПС-1 и направлено в Москву уведомление о готовности. Ответных указаний не пришло, и Королёв самостоятельно принял решение о постановке ракеты со спутником на стартовую позицию. Двумя днями позже "Бип! Бип!" с околоземной орбиты возвестил о начале новой эры в истории человечества.

В США успешный пуск спутника Советским Союзом привел общество в состояние натурального шока -- администрация Эйзенхауэра явно сильно недооценила пропагандистский эффект такого достижения. Восьмого ноября, через пять дней после успешного запуска второго советского ИСЗ Земли, фон Брауну наконец-то было выдано разрешение на подготовку Jupiter-C к пуску американского спутника. Правда приоритет был снова отдан проекту Vanguard -- его пуск был назначен на 6 декабря 1957 года, а детище фон Брауна должно было служить дублером. Впрочем, как я уже упомянул в первом предложении поста, дублер и впрямь понадобился. "Капутник", как его быстро окрестили в прессе, вскоре после пуска упал обратно на стартовый стол и взорвался:

31 января 1958 года, была успешно запущена ракета космического назначения (РКН) Juno I с обозначением "UE" (Redstone #29).

На орбиту Земли был выведен первый американский спутник, Explorer I -- с правой стороны схемы виден тот самый твердотопливный двигатель Baby Sergant, который крепился к спутнику.

Устройство первого американского ИСЗ (рис. К. Русакова, "Новости космонавтики" 2003 № 3):


1 - носовой обтекатель;
2 - температурный зонд;
3 - маломощный передатчик (10 мВт, 108 МГц);
4, 14 - измеритель внешней температуры;
5, 10- щелевая антенна;
6 - отсеки исследования космических лучей и микрометеоритов (приборы доктора Дж. Ван Аллена);
7 - микрометеритньй микрофон;
8 - мощный передатчик (60 мВт; 108 МГц);
9 - измеритель внутренней температуры;
11 - пустой корпус четвертой ступени;
12 - измерители микрометеоритной эррозии;
13 - гибкая антенна длиной 56 см

Кроме наличия "живой" четвертой ступени Jupiter-C в этом пуске ничем не отличался от пущенной в 1956 году ракеты. Более того, ракета запустившая Explorer-1 была дублёром ракеты запущеной в сентябре 1956 года. В связи с успешным запуском первой ракеты, вторая тогда не понадобилась и была отправлена на хранение. Наконец, сама по себе РКН эта очень напоминала оригинальный Project Orbiter, предложенный Брауном в середины пятидесятых.

В качестве резюме: только и исключительно политический запрет со стороны американского правительства не позволил космической эре начаться на 1 год и 2 недели раньше, чем она началась. Причем эра эта могла начаться и позже, если бы не настойчивость Королева -- тот сразу после успешного испытания Р-7, вместо почивания на лаврах, тут же принялся лоббировать пуск ИСЗ в ЦК. Это к вопросу о роли личности в истории -- ведь если бы первый ИСЗ был американским, космической гонки которая так сильно повлияла на историю человечества во вторую половину XX века могло бы и не быть.

Баллистическая ракета среднего радиуса действия (БРСД) "Jupiter" является прямым потомком ракеты "Redstone" , которая была создана под руководством В. Фон Брауна в "Ordnance Guided Missile Center". "Redstone" имела максимальную дальность полета порядка 240км. В то время, как работы над ракетой "Redstone" еще только развертывались, Управление Артиллерии Армии США начало выработку требований к перспективной ракете с дальностью стрельбы не менее 1600км. Уже в 1953 году, ободренный успешной реализацией программы "Redstone", В. фон Браун пришел к выводу, что разработка ракеты повышенной дальности возможна, и обратился к Начальнику Управления Артиллерии за разрешением приступить к разработке нового ударного средства. Однако руководство Армии первоначально не проявило должного интереса к предложению фон Брауна, и программа по разработке новой ракеты была причислена к числу низкоприоритетных исследовательских программ.

Все изменилось в 1955 году после обращения т.н. комитета Киллиана к Президенту Д. Эйзенхауэру. В докладе комитета говорилось о том, что, наряду с разработкой МБР, США должны безотлагательно приступить к разработке БРСД с дальностью действия порядка 2400км. Новый класс ракет должен был быть развернут как на суше (на базах США в Европе), так и на море (рассматривались варианты базирования новых ракет на подводных лодках, а также на специальных судах). Необходимость разработки нового класса ракет доказывалась ссылками на разведданные, указывавшие, что СССР уже приступил к разработке собственных БРСД. К концу 1955 года Армия, ВВС и ВМС США заявили о принципиальной готовности приступить к разработкам БРСД. Однако начало конкретных действий тормозилось неопределенностью касательно того, какое именно ведомство должно будет отвечать за разработку новых ракет. В ноябре 1955 года Министр Обороны Ч. Уилсон объявил, что ВВС будут отвечать за разработку БРСД наземного базирования, а объединенная команда Армии/ВМС будет отвечать за разработку БРСД морского базирования. В декабре 1955 года Президент Д. Эйзенхауэр причислил программу разработки БРСД к числу программ наивысшего приоритета. Учитывая немалый опыт Армии по разработке ракет, руководство ВМС согласилось с тем, чтобы разработка и производство опытных образцов осуществлялись в Редстоунском Арсенале Армии. Для осуществления руководства новой программой в феврале 1956 года в Редстоунском Арсенале было создано Агентство Баллистических Ракет Армии ("Army Ballistic Missile Agency").

Однако, несмотря на многообещающее начало, программа разработки новой БРСД вскоре столкнулась с трудностями. В сентябре 1956 года ВМС США отказались от участия в программе разработки БРСД, предпочтя ей программу "Polaris" . В ноябре того же года Министр обороны Уилсон принял решение о том, что все ракеты с дальностью более 320 км будут создаваться и эксплуатироваться только ВВС. Это резко снизило заинтересованность Армии в программе по разработке собственной БРСД. Однако в конце концов было принято решение о продолжении создания в Редстоунском Арсенале «армейской» БРСД, получившей название "Jupiter" и обозначение SM-78. Такое решение аналитики объясняли многочисленными трудностями, с которыми столкнулись ВВС при разработке БРСД - "Thor" .

В сентябре 1955 года начались испытательные запуски прототипа БРСД, получившего название "Jupiter A" , со стартовых площадок Атлантического Ракетного Испытательного Полигона ("Atlantic Missile Range"). При испытании ракеты "Jupiter A" упор делался на проверку основных конструктивных решений, испытывалась система управления и двигатели. Несколько позже на испытания вышла ракета "Jupiter C" , с помощью которой испытывалась головная часть и система отделения. С сентября 1955 по июнь 1958 было запущено 28 ракет "Jupiter A" и "Jupiter C" . Ракета "Jupiter" в конфигурации, близкой к штатной, вышла на испытания в 1956 году. В мае 1956г. БРСД "Jupiter", стартовав с Атлантического Ракетного Испытательного Полигона, пролетела около 1850 км. К июлю 1958 года было запущено 10 БРСД "Jupiter".

Успех программы "Jupiter", вкупе с неудачами программы "Thor", давали армейскому руководству надежду на то, что для производства и развертывания будет выбрана именно «их» ракета. Однако на волне страха, вызванного успешным запуском Советским Союзом Первого Спутника 4 октября 1957 года, Президент Эйзенхауэр отдал приказ о полномасштабном производстве обеих БРСД. К недовольству Армии, в соответствии с ранее принятым решением Министра обороны, ВВС начали постепенное подчинение всей программы "Jupiter" себе - уже в феврале 1958 года ВВС открыли свое постоянное представительство в Редстоунском Арсенале, а в марте того же года ВВС создали специальный отдел связи,чьей основной задачей было осуществление координации всех действий между Армией и соответствующими командованиями ВВС. В январе 1958 ВВС активировали в Хантсвилле 864-ю стратегическую ракетную эскадрилью для подготовки расчетов БРСД "Jupiter". В июне того же года в Хантсвилле были активированы 865-я и 866-я стратегические ракетные эскадрильи.

В то время, пока ВВС занимались подготовкой персонала для новой БРСД, Государственный Департамент США активно вел переговоры с рядом европейских стран о размещении на их территории ракет "Jupiter". Первоначально планировалось разместить 45 ракет на территории Франции, однако переговоры успехом не увенчались. В конце концов, согласие на размещение ракет на своей территории дали Италия и Турция. Первой согласилась Италия - уже в марте 1958 года правительство страны дало принципиальное согласие на размещение двух ракетных эскадрилий (по 15 БРСД в каждой) на итальянской территории, окончательно решение было принято в сентябре того же года, а основное соглашение подписано в марте 1959 года. Однако взамен итальянцы желали осуществлять контроль над ракетами самостоятельно, в рамках организационной структуры своих национальных ВВС. Американцы не возражали (тем более что согласно действовавшим правилам контроль термоядерных БЧ должен был все равно осуществлять американский персонал, БРСД также оставались американской собственностью). В мае 1959 года первые итальянские военнослужащие, отобранные для несения службы на БРСД "Jupiter", прибыли на авиабазу Лэкленд (шт.Техас), для проведения обучения. В августе того же года решение всех оставшихся вопросов было отражено в специально подписанном двустороннем соглашении. Тренировка итальянского персонала в США была завершена в октябре 1960 года, после чего итальянцы постепенно заменили большую часть американского персонала на пусковых площадках уже частично развернутых в Италии ракет. В конце октября 1959 года правительство Турции также выразило согласие (на тех же условиях, что и Италия) на размещение одной ракетной эскадрильи (15 БРСД) на своей территории. Как и в случае Италии, решение всех оставшихся вопросов было отражено в двустороннем соглашении, подписанном в мае 1960 года.

Первая серийная БРСД "Jupiter" сошла с конвейера в августе 1958 года. Для производства ракет "Jupiter" были выбраны следующие подрядчики:

  • отделение "Ballistic Missile Division" корпорации "Chrysler" - производство корпусных узлов и окончательная сборка ракеты в целом;
  • отделение "Rocketdyne Division" корпорации "North American Aviation" - производство двигательной установки;
  • компания "Ford Instrument" - производство системы управления;
  • корпорация "General Electric" - производство боевого блока.

В 1962 году, при изменении системы обозначений в ВВС, ракета получила новое обозначение PGM-19A.

Пока решались вопросы производства и базирования новой ракеты (в ноябре 1959 года было подписано соглашение между ВВС и Армией, согласно которому с 1959 года ВВС становились полностью ответственными за осуществление программы "Jupiter"), персонал Стратегического Авиационного Командования проходил подготовку с использованием ракеты "Redstone". Позже, в рамках программы ISWT ("Integrated Weapons System Training") в Редстоунском Арсенале, подготовка личного состава начала осуществляться уже непосредственно с использованием ракет "Jupiter" и оборудования для них. Последний испытательный пуск БРСД "Jupiter" состоялся в феврале 1960 года. Первый запуск БРСД "Jupiter" с имитацией боевой обстановки подготовленным персоналом САК ВВС с Атлантического Ракетного Испытательного Полигона был осуществлен в октябре 1960 года. К этому времени уже несколько месяцев (с июля 1960 года) ракеты начали становиться на боевое дежурство на территории Италии, на базе итальянских ВВС Джойя делль Колли. Полностью боевая готовность всех 30 «итальянских» БРСД была достигнута в июне 1961 года. База на территории Италии получила кодовое обозначение NATO I. Полная боевая готовность 15 «турецких» ракет была достигнута в апреле 1962 года (первые ракеты встали на дежурство в ноябре 1961 года). Ракеты размещались на базе турецких ВВС Тигли, база носила кодовое обозначение NATO II. Как и в случае Италии, на первых порах ракеты обслуживались только американским персоналом, турецкий персонал сменил большую часть американского к маю 1962 года. Первый учебно-боевой пуск БРСД итальянским персоналом был выполнен в апреле 1961 года.

Первый учебно-боевой пуск БРСД турецким персоналом был выполнен в апреле 1962 года.

В декабре 1960 года со сборочных линий сошла последняя серийная БРСД "Jupiter".

Естественно, что 45 развернутых БРСД "Jupiter" (к которым следует добавить еще 60 БРСД "Thor", развернутых в Великобритании), вкупе с явным превосходством США в количестве развернутых МБР и стратегических бомбардировщиков, не могли не вызвать острого беспокойства у военно-политического руководства СССР. С учетом ситуации, было принято решение в ответ развернуть советские БРСД Р-12 и Р-14 на о. Куба в рамках «Операции Анадырь», что вылилось в известный кризис октября 1962 года. В рамках соглашения, заключенного руководствами СССР и США, советские ракеты выводились с Кубы в обмен на деактивацию ракет "Jupiter" в Италии и Турции (решение о деактивации ракет "Thor" в Великобритании было принято еще до кризиса, в августе 1962 года). Решение о деактивации «итальянских» и «турецких» ракет было озвучено в январе 1963 года, в том же месяце был выполнен последний, шестой, учебно-боевой запуск БРСД "Jupiter" итальянским персоналом. В феврале 1963 года ВВС начало подготовку к снятию БРСД с боевого дежурства в рамках операций Pot Pie I («итальянские» ракеты) и Pot Pie II («турецкие» ракеты). К концу апреля 1963 года все ракеты были вывезены из Италии, к концу июля того же года - из Турции.

Состав

БРСД "Jupiter" (см. схему ) состояла из двух частей, сборка которых осуществлялась в полевых условиях:

  • агрегатный отсек с ЖРД и баками компонентов топлива;
  • приборный/двигательный отсек с пристыкованной ГЧ.

Силовая установка БРСД была разработана в Редстоунском Арсенале. Главный двигатель - S3D. Компоненты топлива: горючее - ракетный керосин RP-1, окислитель - жидкий кислород. Сопло главного двигателя - управляемое, отклоняемое в узле подвески для управления ракетой по каналам тангажа и рыскания. Аэродинамические рули и стабилизаторы отсутствовали. Камера сгорания двигателя была отделена от прочих узлов ДУ специальной термостойкой стенкой. Обшивка хвостовой части ракеты, где размещалась ДУ, имела гофрированную обшивку для улучшения прочностных характеристик. Отсек баков компонентов топлива размещался сверху отсека ДУ и отделялся от последнего специальной переборкой. В свою очередь, баки окислителя (снизу) и горючего (сверху) также разделялись специальной переборкой. Специальная переборка отделяла бак горючего от приборного отсека. Ракета "Jupiter" имела несущую конструкцию баков. Корпус сваривался из алюминиевых панелей. Трубопровод подачи горючего проходил через бак окислителя, там же проходили кабели системы управления. Компоненты топлива подавались в камеру сгорания с помощью насосов, которые приводились в действие турбиной, работавшей на продуктах сгорания основных компонентов топлива. Отработанный газ использовался для управления ракетой по каналу крена. Наддув баков перед запуском осуществлялся с помощью азота из специальной цистерны (см. компоновочную схему ).

Головная часть, имевшая армейское обозначение Mk3, оснащалась абляционной (обгорающей) теплозащитой из органических материалов и содержала в себе термоядерную БЧ W-49 мощностью 1,44 Мт, что позволяло уверенно поражать площадные цели. Головная часть была соединена с приборным/двигательным отсеком, где размещалась инерциальная система управления и блок твердотопливных двигателей ориентации и стабилизации. Основной (верньерный) твердотопливный двигатель срабатывал через 2 секунды после отделения сборки ГЧ/приборного отсека от агрегатного отсека (соединялись они 6-ю пироболтами) и осуществлял регулировку скорости сборки с точностью ±0,3 м/с. После прохождения сборкой апогея траектории срабатывали два маломощных твердотопливных двигателя, закручивавших сборку для стабилизации. После чего приборный/двигательный отсек отделялся от ГЧ с помощью детонирующего шнура и затем сгорал в плотных слоях атмосферы (см. схему траектории ).

Ракета "Jupiter" создавалась как мобильная БРСД, транспортирование которой осуществлялось автотранспортом. Эскадрилья БРСД "Jupiter" состояла из 15 ракет (5 звеньев по 3 БРСД) и примерно 500 офицеров и солдат личного состава. Каждое звено размещалось в нескольких километрах друг от друга с целью снижения уязвимости к ядерному удару. С той же целью ракеты одного звена размещались на расстоянии нескольких сот метров друг от друга. Непосредственно каждое звено обслуживалось на позиции пятью офицерами и десятью солдатами (см. схему стартовой позиции ).

Оборудование и ракеты каждого звена размещалась примерно на 20-и автомашинах:

  • две машины электроэнергетического обеспечения;
  • одна машина обеспечения распределения электроэнергии;
  • две машины с теодолитами;
  • машина гидравлики и пневматики;
  • машина обеспечения заправкой окислителем;
  • машина-цистерна горючего;
  • три машины-цистерны окислителя;
  • машина управления комплексом;
  • машина-цистерна жидкого азота;
  • машины перевозки БРСД и ГЧ;
  • вспомогательные машины.

Ракета размещалась на специальном стартовом столе, к которому она пристыковывалась, после чего вся конструкция приводилась в вертикальное положение, а нижняя треть ракеты закрывалась специальным легким металлическим укрытием, позволявшим обслуживать ракету в непогоду. Заправка ракеты компонентами топлива осуществлялась за 15 минут. Запуск ракет звена производился по команде из специальной автомашины экипажем из офицера и двух солдат. Каждая эскадрилья производила техническое обслуживание материальной части на специальной базе, имевшей в своем распоряжении все необходимые материалы, а также завод по производству жидкого кислорода и жидкого азота.

Баллистическая ракета средней дальности Jupiter малоизвестна и имела короткий срок службы. Несмотря на это она внесла большой вклад в развитие ракетной техники в США.

После разработки ракеты малой дальности Redstone, в 1954 году исследовательская группа армии в арсенале Redstone начала проработку более мощной ракеты, которая должна была быть способна доставить ядерную боеголовку на расстояние 1600 км или вывести на орбиту искусственный спутник. 14 февраля 1955 года вышел отчет Killian, который призывал наряду с МБР вести разработку ракет средней дальности. Этот отчет, а также испытания БРСД в СССР побудили министра обороны США Чарлза Уилсона утвердить 8 ноября 1955 года разработку ракеты Thor. В тот же день он приказал начать разработку БРСД морского базирования Jupiter в качестве второстепенной альтернативы Thor.


Изначально сотрудничество с флотом позитивно влияло на программу Jupiter. Для того, чтобы соответствовать требованиям флота, длина ракеты была уменьшена, а вместо управляющих поверхностей был применен двигатель с поворотным соплом. Однако независимо от этих улучшений, ракетный двигатель на жидком топливе совершенно не соответствовал требованиям ВМФ. Поскольку двигатель с ноября 1955 года уже проходил испытания, армия не соглашалась перейти на использование твердотопливного двигателя. В результате флот начал разработку собственной версии Jupiter на твердом топливе под названием Jupiter S.

Хотя флот прекратил разработку жидкотопливной ракеты, он все еще был вовлечен в программу Jupiter. В результате работы продолжались и 14 мая 1956 года были проведены летные испытания компонентов ракет с помощью модифицированной версии Redstone под названием Jupiter "A". Три месяца спустя армия подписала контракт на производство ракет Jupiter с Chrysler Corporation. В этом же месяце первые три двигателя были доставлены на мыс Канаверел для проведения испытательных пусков. Большое событие произошло 20 сентября 1956 года, когда армия произвела пуск Jupiter "A" со специальной секцией, имитирующей полезную нагрузку. Эта ракета, названная Jupiter C, достигла высоты 1045 км и дальности 5470 км, установив три рекорда для баллистических ракет, разработанных в западных странах.

Этот пуск Jupiter С был очень важен как для армии, так и для национального престижа. Он также стал последним аккордом в соперничестве ВВС и армии. ВВС, отвечавшие за две программы разработки МБР и программу БРСД Thor, считали исследования армии ущемлением своих интересов. Так как это был вопрос юрисдикции, он мог быть решен только министром обороны. 28 ноября 1956 года Уилсон издал свою знаменитую директиву "Roles and Mission", которая отдавала под контроль ВВС все программы разработки ракет дальностью более 320 км.

В результате Jupiter перешел к ВВС. Однако все исследовательские работы продолжали выполняться в Redstone Arsenal, принадлежащем армии. Затем, первый запуск ракеты, произведенный в марте 1957 года с мыса Канаверел, также выполнялся армейским персоналом. Хотя он был неудачным, следующий пуск, выполненный 31 мая, был успешным. Дальность составила 2400 км. Так как это произошло за четыре месяца до первого успешного пуска Thor, Jupiter стал первой в США успешно запущенной баллистической ракетой средней дальности.

Хотя Jupiter и превзошел Thor по дальности полета, по сравнению с конкурентом программа развивалась очень вяло. Например, испытательные пуски Jupiter выполнялись с инженерными образцами, в то время как в тестах Thor были задействованы серийно выпускающиеся ракеты. Кроме того, оборудование для запуска и обслуживания Thor разрабатывалось одновременно с ракетой, в то время как его разработка для Jupiter началась только после первого успешного пуска ракеты. Далее эти задержки были усугублены требованием ВВС использовать для Jupiter модифицированное оборудование, предназначенное для Thor. Эта задача оказалась невыполнимой.

С 9 октября 1957 года, после назначения на пост министра обороны Neil H. McElroy, отношение к программе Jupiter изменилось. Было объявлено, что будут развернуты как Thor, так и Jupiter. В рамках нового плана первые подразделения должны были быть готовы к декабрю 1958 года.

2 января 1958 года было получено одобрение на использование разработанного армией оборудования для обслуживания Jupiter. Через два дня Chrysler получил контракт стоимостью 51,8 млн. долларов на производство Jupiter. Первая эскадрилья Jupiter (864-я) была сформирована 15 января 1958 года. В феврале началось обучение, далее были сформированы еще две эскадрильи (865-я и 866-я). Первый серийный Jupiter был поставлен в августе, а первый пуск, выполненный ВВС, состоялся 15 октября 1958 года. Однако, в это время первый Thor был уже доставлен в Великобританию. Несмотря на развертывание Thor, в ВВС осознали, что Jupiter является намного более эффективной ракетой средней дальности. Поскольку он был мобильным, это резко затрудняло возможность нанесения противником превентивного ракетно-ядерного удара. Кроме того, поскольку в конструкция ракеты изначально была рассчитана на ее перевозки, она была более прочной и устойчивой по отношению к действию обычного оружия.

В отличие от «Тора», стартовавшего только с заранее подготовленных позиций, «Юпитер» запускался с мобильной пусковой установки. Батарея ракет «Юпитер» включала три боевые ракеты и состояла из примерно 20 тяжёлых грузовиков, включая цистерны с керосином и жидким кислородом.

Ракета транспортировалась горизонтально, на специальной машине. Прибыв на место развёртывания, батарея устанавливала ракеты вертикально и возводила вокруг основания каждой ракеты «навес» из алюминиевых листов, укрывавший работающий над подготовкой к старту персонал и позволяющий обслуживать ракеты при любых погодных условиях. После установки, ракета требовала приблизительно 15 минут для заправки после чего была готова к запуску.

Еще одним преимуществом Jupiter была абляционная головная часть. В отличие от головной части Mk-II для Thor, она входила в атмосферу на большей скорости. В результате ее было сложнее перехватить, кроме того, она была менее чувствительна к боковому ветру и в результате имела значительно большую точность. В результате ВВС приняли решение отказаться от Mk-II и использовать абляционные боевые части на обеих ракетах.

В 1959 году было достигнуто соглашение с правительством Италии о размещении на территории страны двух эскадрилий — 865-й и 866-й, ранее базировавшихся на военной базе «Редстоунский арсенал» (Хантсвилл, США). Для размещения ракет была выбрана авиабаза «Джиойя дель Колле» в южной Италии. Два эскадрона, каждый в составе 15 ракет, были направлены в Италию в 1959 году.

В состав каждой эскадрильи входило 15 боевых ракет, разделённых на пять стартовых батарей — примерно 500 человек персонала и 20 машин оснащения на каждую ракету. Десять батарей были развёрнуты на расстоянии в 50 км друг от друга в 1961 году. Ракеты находились под официальной юрисдикцией итальянских ВВС и обслуживались итальянским персоналом, хотя контроль за ядерными боеголовками и их снаряжение осуществляли американские офицеры. Ракетные батареи регулярно меняли места дислокации. Для каждой из них, в 10 находившихся поблизости деревнях были подготовлены склады горючего и жидкого кислорода, регулярно пополняемые и обслуживаемые.

15 ракет были расположены на 5 позициях вокруг Измира в Турции в 1961 году. Также как и в Италии, турецкий персонал осуществлял обслуживание ракет, но ядерные заряды контролировались и снаряжались офицерами США.

Первый учебно-боевой пуск БРСД итальянским персоналом был выполнен в апреле 1961 года. Первый учебно-боевой пуск БРСД турецким персоналом был выполнен в апреле 1962 года.

В 1954 г. директор, а затем главный инженер НИИ–88 М.К.Янгель, назначенный главным конструктором крупнейшего к тому времени Днепропетровского завода №586, резко увеличил мощности КБ и начал широкомасштабную разработку баллистических ракет средней дальности (БРСД) на высококипящих компонентах топлива.

Старт ракеты Р-5М

В этом его поощряли высшие украинские государственные и партийные руководители, многие из которых вскорости перебрались в Кремль, в частности, Л.И.Брежнев. По их мнению, работы ОКБ–586 могли способствовать росту престижа Украины перед лицом верховной власти, что давало республике новые возможности. Кроме того, в перспективе Янгель мог посоперничать и с самим Королёвым, создав МБР на долгохранимом топливе. Однако поначалу актуальной задачей стало оперативное конструирование первой собственной БРСД. Переход на новые компоненты потребовал решения целого ряда проблем, связанных с повышением стойкости конструкционных материалов в агрессивной среде, сохранением стабильности компонентов топлива при длительном их нахождении в баках ракеты. Взяв за основу первоначальный проект, подготовленный под руководством В.С.Будника, М.К.Янгель не мог и не хотел называть «полностью своей» ракету, разработку которой начинал не он. Для того, чтобы преимущества днепропетровского детища выглядели более отчетливо, проект пересмотрели и предложили БРСД, имеющую дальность около 2000 км (на 66% больше, чем у Р–5М), способную нести более мощную ГЧ. Ракета получила обозначение Р–12.

#

Схема ракет Р-5М, Р-12 прототип и Р-12 серия

13 августа 1955 г. было принято Постановление СМ «О создании и изготовлении ракеты Р–12 (8К63)» с выходом на ЛКИ в апреле 1957 г., а в октябре 1955 г. удалось выпустить откорректированный эскизный проект. Дальность и забрасываемая масса возросли, что привело к увеличению относительного запаса топлива. В итоге существенно большей стала стартовая масса «изделия». Тяга двигателя РД–211 оказалась недостаточной. Однако М.К.Янгель не видел в этом особой проблемы - он ощущал у себя за спиной мощную поддержку В.П.Глушко, который обещал ему ускоренными темпами разрабатывать и сдавать все необходимые ЖРД на новых компонентах. Надо сказать, что работы по двигателю РД–211 началась в 1953 г. Зная по прежнему опыту, что камера сгорания, определяя такие важные характеристики ЖРД, как тягу и удельный импульс тяги (удельный импульс тяги - параметр, характеризующий экономичность двигателя; измеряется в кгс/кг·с. Физический смысл - тяга, развиваемая двигателем при расходе топлива 1 кг в секунду. Далее по тексту, для краткости, просто «удельный импульс» - прим. авт.), является самым капризным в доводке элементом двигателя, Валентин Петрович предложил сделать ЖРД многокамерным. Он полагал, что отработать одну сравнительно небольшую камеру многокамерного двигателя будет легче, чем довести ЖРД с единственной камерой большой тяги. Исходный азотнокислотный РД–211 изначально делался четырехкамерным - тяга каждой его камеры была почти в два раза меньше, чем у первого РД–100 - аналога двигателя немецкой А–4. Экспериментально–доводочные испытания азотнокислотной камеры сгорания с вытеснительной подачей топлива, начатые на стенде в том же 1953 г., дали очень неплохие результаты.

Двигатель ракеты А-4

К этому времени ОКБ В.П.Глушко, кроме создания двигателя для ОКБ–586, участвовало в работах по ЖРД сразу для двух межконтинентальных ракет - для обеих ступеней королёвской МБР Р–7 (на кислороде и керосине) и для стартовых ускорителей советской сверхзвуковой межконтинентальной крылатой ракеты (МКР) «Буран», проектировавшейся в ОКБ–23 В.М.Мясищева. РД–212 на азотной кислоте и керосине для «Бурана» делался на базе РД–211. А.М.Исаев, который несколько раньше создал ЖРД для стартовых ускорителей первой советской МКР «Буря» разработки ОКБ С.А.Лавочкина, столкнулся с неприятным явлением - взрывами топливной смеси в замкнутых полостях форсуночных головок. Керосин оказался далеко не лучшим горючим для пары с азотной кислотой - он не обеспечивал самовоспламенения и давал слишком «жесткое» горение в камерах. «Нахлебавшись» с ним вдосталь, Исаев во всех своих следующих двигателях на долгохранимом топливе отказался от применения керосина в пользу самовоспламеняющегося горючего - сначала аминов, а потом горючих на основе гидразина. В.П.Глушко вышел из этого положения, применив углеводородное горючее ТМ–185 типа скипидара, имевшее плавные характеристики при зажигании и обеспечившее более устойчивое горение с азотной кислотой, чем обычный керосин или ракетное горючее РГ–1. Во всяком случае, упоминаний о трудностях с доводкой ЖРД по вине горючего в отчетах ОКБ–456 не было. Стендовую отработку РД–212 не завершили в связи с изменениями тактико–технических требований к МКР «Буран» - потребовалось на 22% повысить тягу стартовых ускорителей, в связи с чем началась разработка РД–213, завершенная в 1956 г. официальными стендовыми испытаниями и сдачей партии двигателей заказчику. Однако в том же году заказчик понял, что две МКР («Буря» и «Буран») ему не нужны, поэтому работы по последнему прекратили. Используя полученный задел, В.П.Глушко удалось быстро создать мощный и очень надежный двигатель для ракеты Р–12, названный РД–214.

Двигатель РД-214

РД–214 (начало разработки - 1955 г.) стал самым совершенным ЖРД из всего семейства двигателей ОКБ–254 на азотной кислоте и керосине и единственным из них, получившим практическое применение. В 1957 г. начались его огневые доводочные испытания, которые проводились в два этапа. ЖРД испытывался сразу в полной четырехкамерной комплектации. На первом этапе отрабатывался запуск и проверялась работоспособность двигателя в течение заданного времени работы. Были определены многочисленные особенности переходных процессов при запуске и останове. В частности, оказалось, что замедленный выход на номинальный режим тяга приводит к возникновению высокочастотных пульсаций в камерах сгорания. В результате первая серия доводочных испытаний и чистовые доводочные испытания были успешно завершены. Удачно прошли и контрольно–технологические огневые испытания партии товарных двигателе. В марте 1957 г. начались стендовые испытания РД–214 в составе ракеты Р–12 на стенде НИИ–229 в Загорске. К началу ЛКИ такие испытания прошли четыре ЖРД. Из этой же партии отбирались двигатели для ЛКИ ракеты Р–12. Второй этап огневых испытаний бы направлен на снижение разброса импульса последействия, а также на набор необходимой статистики по надежности двигателя. Стало ясно, что оптимальным способом снижения импульса последействия является переход перед его выключением на режим конечной ступени тяги. Однако, испытания показали, что при снижении давления в камерах ниже определенной величины в них возникают низкочастотные колебания, которые могут привести к разрушению ЖРД. В итоге определили режим выхода на конечную ступень и величину тяги перед выключением.


Ходовая часть ракеты Р-12 (вид с торца)
Видны заглушки в критических сечениях сопел и рычаги управления газовых рулей

Уже во время проведения ЛКИ ракеты Р–12 к 1959 г. РД–214 успешно прошел весь объем чистовых доводочных и летных испытаний, был сдан в серийное производство и принят на вооружение Советской Армии. Вдохновленный успехом семейства Р–211/Р–214, В.П.Глушко пошел на перекомпоновку двигателей для «семёрки» из однокамерного в четырехкамерный, когда потребовалось увеличить тягу в связи с увеличением стартовой массы ракеты. После этого многокамерная компоновка ЖРД с единым турбонасосным агрегатом стала широко применяться химкинским ОКБ.


Схема размещения ракет Р-5М и Р-12 на транспортных тележках

Использование РД–214 сказалась на внешнем виде ракеты Р–12: пришлось существенно изменить хвостовой отсек, введя коническую юбку–обтекатель. Однако при продувках в аэродинамических трубах моделей ракеты выяснилось, что такая юбка положительно влияет на устойчивость ракеты. Говоря о внешнем виде Р–12, можно сказать, что он существенно отличался от облика Р–5М: былая изящность плавных обводов сменилась рубленой прямотой простых контуров, образованных сопряжением цилиндрического отсека баков с конусами головной части и хвостовой юбки. С.П.Королёв, увидев впервые чертеж этой ракеты, не преминул заметить: «Этот «карандаш» не полетит…» Еще одним дискуссионным вопросом, в котором М.К.Янгель стремился отстаивать самостоятельную позицию, была система наведения ракеты. Старые гироскопические приборы - наследники «гирогоризонтов» и «гировертикантов» немецкой А–4 - давали слишком большое рассеивание ГЧ на больших дальностях. Для увеличения точности некоторые специалисты в то время предлагали ввести систему радиокоррекции на активном участке траектории. С.П.Королев положительно относился к таким предложениям - все его ракеты, начиная с Р–2, имели (одни - в качестве основного, другие - в качестве вспомогательного) радиоканал боковой коррекции траектории. М.К.Янгель полагал, что необходимо развивать чисто автономные, инерциальные системы наведения на базе совершенствованию гироприборов. Это давало баллистической ракете большую неуязвимость - такую систему невозможно «забить» радиопомехами. В соответствии с этими требованиями для Р–12 разрабатывалась инерциальная и полностью автономная СУ. Время показало, что для боевых ракет такой подход был абсолютно оправдан. Интересно отметить, что испытания системы управления для Р–12 проводились с использованием ракеты Р–5М.

Схема ракет Р-12, Р-14 и Р-16

Летные испытания Р–12 начались 22 июня 1957 г. с ГЦП №4 Капустин Яр и продолжались до декабря 1958 г. Они проводились в три этапа; всего стартовали 25 ракет. Все работы по этой ракете, включая изготовление опытной серии Р–12, ее ЛКИ на полигоне и подготовку к серийному производству, были закончены в 1959 г. 4 марта того же года комплекс Р–12 наземного базирования был сдан на вооружение, а завод №586 и ОКБ–586 награждены орденами Ленина. М.К.Янгелю, Л.В.Смирнову (директор завода) и В.С.Буднику присвоили звание Героев Социалистического Труда. Для вручения правительственных наград в июле 1959 г. завод посетил Н.С.Хрущёв. Практически параллельно с ЛКИ этой ракеты коллектив ОКБ–586 вел новые разработки. К сентябрю 1957 г. был составлен эскизный проект ракеты Р–15 для вооружения подводных лодок ВМФ, выпущенный в соответствии с Постановлением СМ от 17 августа 1956 г., а уже к ноябрю 1957 г. проектанты, в соответствии с Постановлением СМ от 17.12.1956 г. «О создании межконтинентальной баллистической ракеты Р–16 (8К64)», подготовили эскизный проект собственной МБР. Предполагалось выйти на её ЛКИ к июню 1961 г. Для ускоренной проверки некоторых конструктивных решений днепропетровцы попутно разработали проект ракеты для замены Р–12 - более совершенной БРСД с удвоенной против прежней дальностью. 02 июля 1958 г. вышло Постановление СМ о разработке баллистической ракеты Р–14 (8К65) с дальностью полета 4000 км с тем, чтобы выйти на ЛКИ в апреле 1960 г. К декабрю 1958 г. эскизный проект был готов. Тем временем активно шло налаживание серийного производства Р–12, причем не только в Днепропетровске, но и в Омске. С момента оснащения инженерных бригад РВГК ракетами Р–5М и Р–12 их боевые возможности и огневая мощь существенно возросли. Кроме бригад, находящихся к тому времени в подчинении Штаба реактивных частей, на базе авиационных частей в 1956–1959 гг. были сформированы ракетные части Дальней авиации. 17 декабря 1959 г. вышло Постановление СМ о слиянии этих подразделений в единые Ракетные войска стратегического назначения (РВСН) под командованием маршала артиллерии Митрофана Ивановича Неделина. Р–12 стала базовой при создании группировки ракет средней дальности. Первые полки РВСН с ракетами Р–12 наземного базирования были развернуты 15–16 мая 1960 г. в населенных пунктах Слоним, Новогрудок и Пинск в Белоруссии, Гезгалы на Кавказе и Плунге в Прибалтике. Темпы разработок и последующего развертывания ракет не могут не впечатлять. Однако, время было такое, и главным лозунгом оставалось «Перегнать Америку!» Это была не абстрактная гонка - арсеналы НАТО были отнюдь не вымышленными. Уже 01 декабря 1955 г. программа создания БРДД была объявлена президентом Эйзенхауэром приоритетной, и с этого момента американцы шли с нами буквально «голова в голову», практически не отставая по срокам, а иногда вырываясь вперед по отдельным характеристикам ракет. В результате проведенных разработок США создали сразу две системы, во многом являющиеся аналогами Р–12 и Р–14. 14 марта 1956 г. начались испытания ракеты «Юпитер», спроектированной для Управления баллистических ракет Армии США «немецкой командой» редстоунского арсенала под руководством В.фон Брауна. (Фактически Вернер фон Браун был главным инженером проекта и директором программы «Юпитер». Непосредственным конструированием механических систем занимался Уильям Мразек, систему наведения и управления разрабатывал Вальтер Хёссерманн, наземное оборудование - Ханс Хёйтер, стартовое оборудование - Курт Дебус. Координацию работ и общую компоновку системы вели Хейнс Коэлле и Харри Руппе.) При третьем запуске, 31 мая 1957 г., ракета достигла расчетной дальности 2780 км. До июля 1958 г. провели 38 пусков, из которых 29 признаны успешными. С лета того же года система SM–78 «Юпитер» была поставлена на вооружение 864–й и 865–й эскадрилий стратегических ракет армии США, дислоцированных в Италии и Турции. В каждой эскадрилье - по 30 ракет. Несколько «Юпитеров» передали Королевским ВВС Великобритании.

Подготовка к старту БРСД «Юпитер»

Менее чем через десять месяцев после начала ЛКИ «Юпитера», 25 января 1957 г. впервые стартовала ракета «Тор», разработанная фирмой «Дуглас Эйркрафт» по заказу отдела баллистических ракет ВВС Соединенных Штатов. Первый пуск состоялся всего через 13 месяцев после подписания контракта на создание этой ракеты. Уже 20 сентября 1957 г. она с упрощенной системой управления достигла дальности 2400 км. В восьмом по счету и четвертом успешном полете, 19 декабря 1957 г. головная часть «Тора», оснащенного штатной системой управления, с высокой точностью «поразила» полигон цели. До 28 января 1959 г. провели 31 запуск этой ракеты, из которых 15 - полностью успешные, 12 - частично успешные и четыре закончились неудачно. Первый «Тор» был передан бомбардировочному командованию английских ВВС 19 сентября 1958 г. и поступил на вооружение 77–й эскадрильи стратегических ракет, дислоцированной вблизи Фолтуэлла (графство Норфолк). Кроме Великобритании, система SМ–75 «Тор» состояла на вооружении двух эскадрилий по 15 ракет в каждой, базировавшихся в Италии и Турции.

Установка верхних ступеней на РН «Тор-Эйбл», созданную на базе БРСД «Тор»

«Юпитер» и «Тор» проектировались разными фирмами и довольно значительно отличались внешне (первоначально фон Браун хотел предложить «Юпитер» Флоту для использования с подводных лодок, и эта ракета получилась короткой и «толстой»). В то же время они имели много общего. В частности, в качестве компонентов топлива использовались жидкий кислород и керосин, для управления полетом применялись однокамерные ЖРД, качающиеся в карданном подвесе и отличающиеся друг от друга только компоновкой, поскольку создавались одной фирмой - «Рокетдайн». Обе эти ракеты считались мобильными, поскольку перевозились на колесном транспортере, а старт «Юпитера» вообще производился с подвижной пусковой установки. Целями ракет были объекты в европейской части СССР. «Тор» и «Юпитер» строились малой серией. Общее их число в ВВС и Армии США достигало 105 единиц.

RS-27A – современная модификация ЖРД, который устанавливался на БРСД «Юпитер» и «Тор»

Однако вернемся к Р–12 и ее роли в формировании РВСН. К 1960 г. в мире складывалось очень непростое положение. Несмотря на то, что в СССР уже были приняты на вооружение МБР Р–7 и БРСД Р–12, приоритет в количестве ядерных боезарядов и средств их доставки оставался на стороне США. Первые советские МБР на базе «семёрки» вследствие их малочисленности и ограничений по применению не могли реально конкурировать с американскими ракетами и бомбардировщиками. Другое дело днепропетровские БРСД - вследствие их сравнительной простоты, дешевизны и высокой боеготовности они могли быть быстро и широко развернуты в частях. В соответствии с новыми возможностями создавалась новая военная доктрина СССР, основные положения которой были сформулированы 14.01.1960 г. Н.С.Хрущёвым в речи в Верховном Совете СССР, озаглавленной «Разоружение для прочного мира и дружбы». Центральное место в военной стратегии занимали баллистические ракеты, которые становились решающим фактором воздействия на противника как в европейских, так и в глобальных войнах. В соответствии с этой доктриной строились и возможные сценарии будущих войн, которые теперь должны были начинаться с массированного ядерного удара. Ракетные войска стратегического назначения стали важнейшей частью Вооруженных Сил СССР. Вот что написано о ракете Р–12 в сборнике «Советское ядерное оружие»: «С развертыванием в 1958 г. SS–4 Sandal (название ракеты Р–12 по принятой в НАТО терминологии - прим. авт.) СССР получил возможность наносить ядерные удары оперативного характера независимо от стратегических сил дальнего действия. SS–4 вскоре была дополнена баллистической ракетой промежуточной дальности SS–5 (Р–14 - прим. авт. ), вступившей в строй в 1961 г. Количество размещенных SS–3 (Р–5М - прим. авт. ), SS–4 и SS–5 достигло максимума в середине 1960–х гг., когда их насчитывалось свыше 700, причем все, кроме 100, были направлен на объекты в Западной Европе». Несмотря на то, что наземный комплекс с ракетами Р–12 считался в то время высокоавтоматизированным, многие процедуры, связанные с подготовкой ракеты к старту и ее заправкой проводили вручную. Сложность эксплуатации комплекса в частях и соединениях выявлялась, в частности, во время комплексных занятий по заправке компонентами ракетного топлива учебно–тренировочных ракет, которые проводились со второй половины 1963 г. Ракеты многократно заправлялись, а затем направлялись в арсенал. Особенно напряженной была работа личного состава полков и соединений РСД время их выездов в ГЦП №4 Капустин Яр для проведения учебно–боевых стрельб.


Схема установки ракеты Р-12 на стартовый стол

Вот как вспоминает о таких момент один из ветеранов–ракетчиков, генерал–полковник в отставке Ю.П.Забегайлов: «В июле 1964 г. температура воздуха полигоне доходила до плюс 40 градусов. Во время заправки ракеты на позиции воздух не шелохнется, примерно до высоты 1–1,5 метра над землей лежит желтое облако паров окислителя, выходящих из дренажной системы заправщиков. Личный состав батареи работает в противогазах и защитной одежде, одетой на голое тело, так как иначе не выдержать и минуты; через каждые 4–5 минут солдаты, сержанты и офицеры подбегают к водовозке, откидывают капюшон защитного костюма и им зашиворот из шланга выливают 1–2 ведра холодной воды. Мокрое тело через 5 минут высыхает под защитной одеждой. Так спасались от перегрева…» Да, в таких условиях можно было не только проверить, на что способен наш воин даже в мирное время, но и понять, что необходимо предпринимать серьезные меры по уменьшению проводимых вручную операций на стартовой позиции. Кроме того, несмотря на то, что ракеты Р–12 размещались при хранении в арочных бетонных сооружениях, сам стартовый комплекс, строившийся практически на тех же принципах, что и его прототипы для ракет от А–4/Р–1 до Р–5М включительно, из–за обилия обслуживающей техники (куда входили автомобили–транспортеры, тягачи, заправщики, командные пункты, узлы связи и т.п.) и незащищенного наземного старта - представлял собой уязвимую мишень при атаке с воздуха. Необходимо было предусмотреть новый способ базирования, которым стала установка ракеты в специальные шахты.


Рисунок художника, характеризующий работу шахтной пусковой установки МБР «Атлас»

В своих воспоминаниях Сергей Никитович Хрущев утверждает, что шахтное базирование для ракет было предложено его отцом, что мы оставляем без комментариев. «Технически» первыми шахту придумали американцы, однако они предполагали только хранить в ней ракету (сначала - «Атлас», затем «Титан–1»), защищая ее от повреждений при атаке с воздуха. Перед пуском ракета вместе со стартовым столом должна была подниматься лифтом из шахты на поверхность и стартовать оттуда. Уже потом было решено стартовать непосредственно из шахты. Первыми полноценными шахтными пусковыми установками (ШПУ) стали шахты для ракет «Титан–2».

Регламентное обслуживание МБР «Титан-2» в шахте

Наши специалисты с самого начала считали целесообразным запуск из шахты. Из всех возможных конструкций была выбрана та, что предусматривала свободный выход ракеты, установленной на стартовом столе, находящийся на дне шахты. Газы, истекающие из ЖРД, должны были выходить через кольцевой газоход между внутренней стенкой ствола шахты и защитным металлическим стаканом, ограждающим ракету. Для проверки нового способа базирования предусматривалось провести натурный эксперимент с ракетой Р–12. Вот что рассказывал о создании первых шахтных установок для ракет Р–12 участник тех давнишних событий Николай Федорович Шлыков: «При создании первых двух ШПУ на полигоне строители на глубине примерно 20 м столкнулись с плывуном. Так как в то время еще не были отработаны методы прохождения плывунов, приняли решение нарастить шахту вверх, насыпав грунт … в виде кургана высотой около семи метров. В этом случае ракета полностью погружалась в ствол шахты. На равнинной местности эти курганы были видны примерно за 10–15 км. Часто они служили ориентирами при движении по полигону и потому были прозваны «маяками». Наземная обслуживающая аппаратура располагалась примерно в 150 м от шахты. Ракета устанавливалась в шахту с помощью 25–тонного крана, заправка проводилась средствами, расположенными на нулевой отметке. Все решения легли в основу технических разработок экспериментальной ШПУ. Детальный проект выполнялся КБ В.П.Бармина и проектным институтом Министерства обороны (ЦПИ–31 МО). Из одного такого «маяка» и состоялся первый пуск ракеты в сентябре 1959 г.. Воспоминания очевидцев о первом пуске Р–12 из шахты неоднозначны: одни утверждают, что, пролетев около 100 км, ракета отклонилась от курса и упала: произошло аварийное выключение ЖРД - при работе двигателя в шахте возникли нерасчетные колебания, приведшие к повреждению одной из четырех рулевых машинок. Другие говорят, что авария произошла по более прозаической причине - газы, истекающие из двигателя в шахте, при взаимодействии с инжектируемым воздухом, выдавили внутрь «стакана» металлическую полосу его обечайки, которая срезала третий стабилизатор ракеты. Полет был управляемым до 57–й секунды, затем, во время прохождения зоны максимальных аэродинамических нагрузок из–за асимметричности конфигурации с тремя стабилизаторами ракета потеряла устойчивость и упала. При осмотре ШПУ выявили деформацию защитного стакана, а срезанный стабилизатор валялся неподалеку от шахты. С одной стороны, это была неудача, с другой - большая победа - впервые в СССР состоялся пуск ракеты из шахты. 30 мая 1960 г. вышло Постановление СМ, а 14 июня 1960 г. был подписан приказ Государственного комитета по оборонной технике (ГКОТ) о разработке боевых ШПУ с условными названиями «Двина» (для ракеты Р–12), «Чусовая» (для Р–14), «Шексна» (для Р–16) и «Десна» (для МБР Р–9А разработки ОКБ–1).

Ракета Р-12У в шахте

После проведения ряда усовершенствований (в частности, модернизации СУ и снятия аэродинамических стабилизаторов) 30 декабря 1961 г. провели первый пуск модернизированной ракеты, названной Р–12У. Её испытания на ГЦП №4 продолжались до октября 1963 г.. Первые боевые шахты для Р–12У построили к 01 января 1963 г. в Плунге (Прибалтика), а через год, 05 января 1964 г. боевой ракетный комплекс с ракетой Р–12У был принят на вооружение РВСН.


Регламентная проверка аппаратуры обеспечения запуска ракета Р-12

В начальный период принятия на вооружение и развертывания этих комплексов, у Р–12 довольно часто выявлялись неисправности и недостатки, мешающие их безопасному использованию. В частности, текли фланцевые соединения трубопроводов. Кроме того, при огневых испытаниях ЖРД серийных ракет наблюдались высокочастотные пульсации давления в камерах. Анализ показал, что серийные насосы имели больший КПД, чем опытные, а газогенератор снаряжался меньшим запасом катализатора. Проведенные впоследствии технологические мероприятия полностью исключили аварии двигателей. С начала 1957 г. проводились контрольные испытания ЖРД, анализ результатов которых показывал высокую надежность двигателей, а использование более прогрессивных методов контрольной проливки ряда агрегатов РД–214 позволил с 1963 г. полностью отказаться от контрольно–технологических испытаний двигателей. В июне 1961 г. провели первые запуски Р–12 с боевыми ГЧ, оснащенными ядерными зарядами («Операция «Роза»). С полевой позиции восточнее Воркуты предусматривалось провести три пуска Р–12 по полигону на острове Новая Земля (первый пуск - с «холостой» ГЧ, два последующих – с боевыми зарядами разной мощности). Во время проведения практических занятий на стартовой позиции по подготовке первой ракеты к пуску из–за ошибки личного состава боевого расчета электрическую схему одной ракеты «сожгли». Только оперативные действия руководства пуском, главного конструктора ОКБ–586 М.К.Янгеля и директора серийного завода Я.В.Колупаева позволили быстро доставить из Омска новую ракету и успешно завершить проведение «Операции «Роза».

Оголовок шахты Р-12Ш

В июле 1962 г., в ходе «Операции К–1 и К–2» проводились запуски ракет Р–12 и высотные ядерные взрывы с целью исследования их влияния на радиосвязь, радиолокаторы, авиационную и ракетную технику. В ходе летных испытаний и начала развертывания Р–12 с помощью этих ракет выполнялись многочисленные эксперименты в интересах различных военных и научных программ. В частности, для испытаний модели ракетоплана, разработанного в ОКБ–52 под руководством В.Н.Челомея было проведено два пуска - в 1961 и 1963 гг.. Во второй половине 1960–х - начале 1970–х с помощью таких же ракет производились испытания моделей многоразового воздушно–космического самолета «БОР–1» и «БОР–2» (БОР - беспилотный орбитальный ракетоплан), создававшихся по проекту «Спираль» в ОКБ А.И.Микояна. Можно отметить многочисленные пуски Р–12 для отработки систем противоракетной обороны (ПРО) ОКБ Г.В.Кисунько.


Аппарат БОР-2, запущенный ракетой Р-12

В 1962 г. эти ракеты едва не взорвали весь мир. Из–за кризиса, случившегося вследствие негативной политической и военной обстановки в Карибском бассейне после кубинской революции создалась реальная угроза американской интервенции на Кубу. СССР поспешил оказать помощь новому союзнику. Открытая военная помощь была бы слишком очевидным противодействием усилиям Соединенных Штатов по возвращению на Кубу прежнего режима. Н.С.Хрущёв предпринял шаг, который, по его мнению, мог одним ударом разрубить гордиев узел проблем: он дал указание разместить на Кубе советские БРСД с советским персоналом. Аргументами к такому решению было то, что американские «Юпитеры» и «Торы» с территории Турции и Италии могут достичь важных центров Советского Союза всего за 10 минут, а нам для ответного удара по американской территории с помощью МБР потребуется более 25 минут. Куба должна была стать стартовой площадкой и угрожать советскими ракетами самому «подбрюшью Америки». Американцы же, по мнению Н.С.Хрущёва, не посмели бы атаковать стартовые позиции, обслуживаемые советскими расчетами. План операции, получившей название «Анадырь», предусматривал размещение на кубинской территории трех полков Р–12 (24 пусковые установки) и двух полков Р–14 (16 установок) наземного базирования. Для проведения этой операции на Балтике, в Одессе и Севастополе были выделены транспорты (в основном, сухогрузы водоизмещением 17 тыс. тонн каждый), которые в обстановке строгой секретности загружались техникой и подразделениями, причем личный состав перевозился в специально переоборудованных трюмах сухогрузов. Часть командного состава доставлялась на Кубу пассажирскими судами «Адмирал Нахимов», «Латвия» и др. Американская разведка смогла обнаружить три советских ракетных полка на Кубе только через месяц, засняв стартовое оборудование с самолета U–2. Легко себе представить, что началось после этого в Вашингтоне! 17 октября 1962 г. журнал «Лайф» опубликовал карту расположения советских ракетных комплексов на Кубе и дугами - зоны досягаемости ракет и возможных районов поражения на американской территории. В этих зонах поднялась паника и началась эвакуация людей в безопасные районы. По–видимому, впервые за всю историю существования Америки как государства ее жители почувствовали реальную угрозу. С этого дня ударная авиация США начала непрерывный круглосуточный облет кубинской территории. Самолеты проносились на малой высоте над позициями ракет, угрожая, но к счастью, не применяя оружия. К концу октября половина из 36 доставленных на Кубу Р–12 были подготовлены к стартовым операциям. Из–за морской блокады Р–14 на остров не прибыли. Любой следующий неосторожный шаг с каждой стороны мог обернуться катастрофой. Мир оказался на грани ядерной войны. Только осознав это, Н.С.Хрущёв и Дж.Ф.Кеннеди пришли к выводу, что конфликт надо разрешать мирным путем. В ходе переговоров договорились, что мы уберем ракеты с Кубы, а американцы - из Турции и Италии. Эти события заставили ракетчиков совершенно по–другому взглянуть на операции такого типа: вместо включения в состав РВСН «Кубинской бригады» пришлось в ускоренном темпе свертывать вооружение, технику и отправлять личный состав в СССР. Карибский кризис оказал влияние не только на весь последующий ход истории, но и на развитие стратегических вооружений в частности. Советские военные поняли, какую силу (военную и политическую) представляют собой такие виды оружия, как БРСД. Здесь интересно отметить, что Р–12, ставшая этапом в жизни Днепропетровского ОКБ, ступенькой «к новым свершениям», оказалась самой массовой ракетой средней дальности, стоявшей на вооружении (по американским данным, за все время серийного выпуска было изготовлено порядка 2300 единиц Р–12). К концу 1960–х гг. в СССР было развернуто более 600 ракет Р–12 и около 100 - Р–14. Жизненный цикл Р–12 продлился до 1990 г., вплоть до ликвидации всего класса РСД в соответствии с Договором между СССР и США.





Ракета Р-12 перед парадом на Красной площади

© В.БОБКОВ, 1997

До начала в 1977 г. широкомасштабного принятия на вооружение мобильных ракетных комплексов SS–20 «Пионер» разработки КБ А.Д.Надирадзе, количество развернутых комплексов с ракетами Р–12 и Р–14 оставалось относительно постоянным. 27.10.1983 г. Генеральный секретарь ЦК КПСС Ю.В.Андропов заявил, что все ракеты SS–5 (Р–14) выведены из эксплуатации. Так, после снятия с вооружения более новой ракеты Р–14 на «службе» в РВСН еще оставалось некоторое количество более старых Р–12. К началу советско–американских переговоров о ликвидации ракет среднего и малого радиуса действия (РСМД) Р–12 были развернуты на базах Алуксне, Виру, Гусев, Кармевала, Коломыя, Малорита, Остров, Пинск, Скала–Подольская, Советск, Стрый. После подписания 8.12.1987 г. Договора между СССР и США о полной ликвидации ракет средней (с 1000 до 5500 км) и меньшей (с 500 до 1000 км) дальности, в течение трех лет, начиная с 1.06.1988 г., все подобные американские и советские ракеты средней и меньшей дальности были уничтожены как класс. Вместе с широко известными БРСД SS–20 «Пионер» по этому договору ликвидировались и комплексы с ракетами Р–12, которых к октябрю 1985 г. оставалось всего 112 единиц. Уже к концу 1987 г. их стало всего 65, к июню 1988 г. - 60. В июне 1989 г. все Р–12 были сняты с вооружения. Согласно ежегодному бюллетеню «Советская военная мощь» (Soviet Military Power) за 1989 г., «…в апреле 1988 г. на вооружении стояло 52 пусковых комплекса SS–4 со 170 боевыми ракетами (65 развернутых и 105 неразвернутых), 142 холостыми учебными ракетами. Количество ракет резко уменьшилось с 608 в 1964–1966 г., хотя с конца 1985 г. по 1987 г. было развернуто 112 ракет на 81 пусковой установке (79 развернутых и 2 неразвернутых)». При рождении ракеты Р–12 ее создатели смотрели на нее с гордостью, хотя предсказывали, что она быстро сойдет со сцены. Даже курсантам военных училищ внушали (и на то были основания), что к концу их обучения Р–12 будет снята с боевого дежурства и они будут служить на новейших ракетных комплексах. Однако, новые ракеты появились, но комплексы с Р–12 продолжали «стоять на страже Родины». И только тогда, когда сами вчерашние курсанты уже заканчивали службу, ракеты стали сниматься с вооружения, и то только из–за Договора по РСМД. По рассказам армейских специалистов, участвовавших в работах по утилизации ракет Р–12, советская и американская сторона провели обоюдные пуски в присутствии инспекторов. «Когда в небо ушла первая советская ракета, вторая, американцы в восхищении зааплодировали. А когда взмыли в небо пятая, десятая… и все своевременно, четко, к тому же точно в цель, аплодисменты они прекратили. Дело в том, что при запусках их ракет сбои начались почти на первых пусках…».


Июнь 1989 г. Встреча ветеранов части в последний день перед уничтожением ракет Р-12 в соответствии с советско-американским договором о ликвидации РСМД

© О.К.РОСЛОВ, 1997


Декабрь 1989 г. Офицеры ракетной части на последних сборах в соединении ракетных войск у одной из последних учебно-боевых БРСД Р-12

Содержание статьи

РАКЕТНОЕ ОРУЖИЕ, управляемые реактивные снаряды и ракеты – беспилотные средства вооружения, траектории движения которых от стартовой точки до поражаемой цели реализуются с использованием ракетных или реактивных двигателей и средств наведения. Ракеты обычно имеют новейшее электронное оборудование, а при изготовлении их используются наиболее совершенные технологии.

Историческая справка.

Уже в 14 в. ракеты использовались в Китае в военных целях. Однако только в 1920–1930-х годах появились технологии, позволяющие оборудовать ракету приборами и средствами управления, способными провести ее от стартовой точки до цели. Сделать это позволили прежде всего гироскопы и электронное оборудование.

Версальский договор, которым завершилась Первая мировая война , лишил Германию наиболее важных видов оружия и запретил ей перевооружение. Однако в этом договоре не были упомянуты ракеты, поскольку разработка их считалась неперспективной. В результате германское военное ведомство проявило интерес к ракетам и управляемым реактивным снарядам, что открыло новую эру в области вооружений. В конечном счете оказалось, что нацистская Германия разрабатывала 138 проектов управляемых снарядов различных типов. Наиболее известными из них являются два вида «оружия возмездия»: крылатая ракета Фау-1 и баллистическая ракета с инерциальной системой наведения Фау-2. Они нанесли тяжелый урон Великобритании и силам союзников в годы Второй мировой войны.

ТЕХНИЧЕСКИЕ ОСОБЕННОСТИ

Существует множество различных типов боевых ракет, однако для любого из них характерно использование новейших технологий в области управления и наведения, двигателей, боеголовок, создания электронных помех и пр.

Наведение.

Если ракета запущена и не теряет в полете устойчивости, необходимо еще вывести ее на цель. Разработаны различные типы систем наведения.

Инерциальное наведение.

Для первых баллистических ракет считалось приемлемым, если инерциальная система выводила ракету в точку, располагающуюся в нескольких километрах от цели: при полезном грузе в виде ядерного заряда уничтожение цели в этом случае вполне возможно. Однако это заставило обе стороны дополнительно защитить наиболее важные объекты, располагая их в укрытиях или бетонных шахтах. В свою очередь конструкторы ракет усовершенствовали инерциальные системы наведения, обеспечив корректировку траектории ракеты средствами астронавигации и отслеживания земного горизонта. Существенную роль сыграли и достижения в гироскопии. К 1980-м годам погрешность наведения межконтинентальных баллистических ракет составляла менее 1 км.

Самонаведение.

Для большинства ракет, несущих обычные взрывчатые вещества, необходима та или иная система самонаведения. При активном самонаведении ракета снабжается собственным радиолокатором и электронным оборудованием, которое ведет ее до встречи с целью.

При полуактивном самонаведении цель облучается радиолокатором, расположенным на стартовой площадке или вблизи нее. Ракета наводится по сигналу, отраженному от цели. Полуактивное самонаведение сохраняет на стартовой площадке много дорогостоящего оборудования, однако дает оператору возможность контроля за выбором цели.

Лазерные целеуказатели, которые стали использоваться с начала 1970-х годов, во вьетнамской войне доказали свою высокую эффективность: они уменьшили время, в течение которого летный экипаж остается доступным вражескому огню, и количество ракет, необходимых для поражения цели. Система наведения такой ракеты фактически не воспринимает какого-либо излучения, кроме испускаемого лазером. Поскольку рассеяние лазерного луча невелико, он может облучать область, не превышающую габаритов цели.

Пассивное самонаведение сводится к обнаружению излучения, которое испускается или отражается целью, с последующим вычислением курса, выводящего ракету на цель. Это могут быть радиолокационные сигналы, излучаемые системами ПВО противника, свет и тепловое излучение двигателей самолета или другого объекта.

Связь по проводам и оптоволоконная связь.

Используемая обычно методика управления основывается на проводной или оптоволоконной связи ракеты с пусковой платформой. Такая связь снижает стоимость ракеты, поскольку наиболее дорогостоящие компоненты остаются в пусковом комплексе и могут использоваться многократно. В ракете сохраняется лишь небольшой управляющий блок, который необходим для обеспечения устойчивости начального движения ракеты, стартующей с пускового устройства.

Двигатели.

Движение боевых ракет обеспечивается, как правило, ракетными двигателями твердого топлива(РДТТ); в некоторых ракетах используется жидкое топливо, а для крылатых ракет предпочтительны реактивные двигатели. Ракетный двигатель автономен, и его работа не связана с поступлением воздуха извне (как работа поршневых или реактивных двигателей). Горючее и окислитель твердого топлива измельчены до порошкообразного состояния и смешаны с жидким связующим. Смесь заливается в корпус двигателя и отверждается. После этого не нужно никаких приготовлений для приведения двигателя в действие в боевых условиях. Хотя большинство тактических управляемых ракет действует в атмосфере, они снабжаются ракетными, а не реактивными двигателями, так как твердотопливные ракетные двигатели быстрее подготавливаются к пуску, почти не имеют движущихся частей и энергетически более эффективны. Реактивные двигатели используются в управляемых снарядах с длительным временем активного полета, когда использование атмосферного воздуха дает существенный выигрыш. Жидкостные ракетные двигатели (ЖРД) широко использовались в 1950–1960-х годах.

Совершенствование технологии изготовления твердого топлива позволило приступить к производству РДТТ с контролируемыми характеристиками горения, исключающими образование трещин в заряде, которые могли бы привести к аварии. Ракетные двигатели, особенно твердотопливные, стареют по мере того, как входящие в них вещества постепенно вступают в химические связи и изменяют состав, поэтому следует периодически проводить контрольные огневые испытания. Если не подтверждается принятый срок годности какого-либо из испытываемых образцов, заменяется вся партия.

Боеголовка.

При использовании осколочных боеголовок в момент взрыва на цель направляются металлические осколки (обычно тысячи стальных или вольфрамовых кубиков). Такая шрапнель наиболее эффективна при поражении самолетов, средств связи, радиолокаторов ПВО и людей, находящихся вне укрытия. Боеголовка приводится в действие взрывателем, который детонирует при поражении цели или на некотором расстоянии от нее. В последнем случае, при так называемом неконтактном инициировании, срабатывание взрывателя происходит, когда сигнал от цели (отраженный радиолокационный луч, тепловое излучение либо сигнал от небольших бортовых лазеров или светочувствительных датчиков) достигает некоторого порога.

Для поражения танков и бронемашин, укрывающих солдат, применяются кумулятивные заряды, обеспечивающие самоорганизующееся формирование направленного движения осколков боеголовки.

Достижения в области систем наведения позволили конструкторам создать кинетическое оружие – ракеты, поражающее действие которых определяется чрезвычайно большой скоростью движения, которая при ударе приводит к выделению огромной кинетической энергии. Такие ракеты обычно используются для противоракетной обороны.

Электронные помехи.

Применение боевых ракет тесно связано с созданием электронных помех и средств борьбы с ними. Целью таких помех является создание сигналов или шума, которые «обманут» ракету и заставят ее следовать за ложной целью. Ранние способы создания электронных помех сводились к выбросу ленточек алюминиевой фольги. На экранах локаторов присутствие ленточек превращается в визуальное отображение шума. Современные системы создания электронных помех анализируют принятые радиолокационные сигналы и передают ложные, чтобы ввести противника в заблуждение, или просто генерируют радиочастотные помехи, достаточные для того, чтобы заглушить систему противника. Важной частью военной электроники стали компьютеры. Неэлектронные помехи включают в себя создание вспышек, т.е. ложных целей для ракет противника с тепловым наведением, а также специально спроектированных реактивных турбин, смешивающих атмосферный воздух с выхлопными газами для снижения инфракрасной «заметности» самолета.

Системы борьбы с электронными помехами используют такие приемы, как изменение рабочих частот и применение поляризованных электромагнитных волн.

Заблаговременные сборка и испытание.

Требование минимального обслуживания и высокой боеготовности ракетного оружия привели к разработке т.н. «сертифицированных» ракет. Собранные и проверенные ракеты герметизируются на заводе в контейнере и после этого поступают на склад, где они хранятся, пока не будут затребованы воинскими частями. При этом становится излишней сборка в полевых условиях (практиковавшаяся для первых ракет), а электронное оборудование не требует проверок и устранения неисправностей.

ТИПЫ БОЕВЫХ РАКЕТ

Баллистические ракеты.

Баллистические ракеты предназначаются для транспортировки термоядерных зарядов к цели. Их можно классифицировать следующим образом: 1) межконтинентальные баллистические ракеты (МБР) с дальностью полета 5600–24 000 км, 2) ракеты промежуточной дальности (выше средней) – 2400–5600 км, 3) «морские» баллистические ракеты (с дальностью 1400–9200 км), запускаемые с подводных лодок, 4) ракеты средней дальности (800–2400 км). Межконтинентальные и морские ракеты в совокупности со стратегическими бомбардировщиками образуют т.н. «ядерную триаду».

Баллистическая ракета затрачивает лишь считанные минуты на перемещение своей боеголовки по параболической траектории, заканчивающейся на цели. Большая часть времени движения боеголовки затрачивается на полет и спуск в космическом пространстве. Тяжелые баллистические ракеты обычно несут несколько боеголовок индивидуального наведения, направляемых на одну и ту же цель или имеющих «свои» цели (как правило, в радиусе нескольких сотен километров от основной мишени). Для обеспечения нужных аэродинамических характеристик при входе в атмосферу боеголовке придается линзообразная или коническая форма. Аппарат снабжен теплозащитным покрытием, которое сублимирует, переходя из твердого состояния сразу в газообразное, и тем самым обеспечивает унос тепла аэродинамического нагрева. Боеголовка снабжается небольшой собственной навигационной системой для компенсации неизбежных траекторных отклонений, которые могут изменить точку встречи.

Фау-2.

Первый успешный полет Фау-2 состоялся в октябре 1942. Всего было изготовлено более 5700 таких ракет. Успешно стартовали 85% из них, но лишь 20% поразили цель, остальные же взорвались при подлете. 1259 ракет поразили Лондон и его окрестности. Однако наиболее пострадал бельгийский порт Антверпен.

Баллистические ракеты с дальностью выше средней.

В рамках крупномасштабной программы исследований с использованием германских ракетных специалистов и ракет Фау-2, захваченных при разгроме Германии, армейские специалисты США спроектировали и испытали ракеты «Корпорал» с малым и «Редстоун» со средним радиусом действия. На смену ракете «Корпорал» вскоре пришел твердотопливный «Сарджент», а место «Редстоуна» занял «Юпитер» – более крупная ракета на жидком топливе с дальностью выше средней.

МБР.

Разработка МБР в США началась в 1947. «Атлас», первая МБР США, поступила на вооружение в 1960.

Советский Союз примерно в это же время приступил к разработке более крупных ракет. Его «Сэпвуд» (SS-6), первая в мире межконтинентальная ракета, стала реальностью после запуска первого спутника (1957).

Ракеты США «Атлас» и «Титан-1» (последняя принята на вооружение в 1962), как и советская SS-6, использовали криогенное жидкое топливо, и поэтому время их подготовки к старту измерялось часами. «Атлас» и «Титан-1» первоначально размещались в ангарах повышенной прочности и лишь перед пуском приводились в боевое состояние. Однако спустя некоторое время появилась ракета «Титан-2», размещавшаяся в бетонированной шахте и имевшая подземный центр управления. «Титан-2» работал на самовоспламеняющемся жидком топливе длительного хранения. В 1962 вступил в строй «Минитмен», трехступенчатая МБР на твердом топливе, доставляющая единственный заряд мощностью в 1 Мт к цели, удаленной на расстояние 13 000 км.

mob_info