Практическое применение явления электромагнитной индукции.

Электромагнитная индукция

В начале XIX столетия опыты в области электромагнетизма стали чуть ли не модой. Открытие в 1820 г. Эрстедом существование магнитного поля вокруг проводника с током вызвало небывалый резонанс в научных кругах. Проводилось множество экспериментов с электричеством.

29 августа 1831 г. Фарадеем эмпирически было открыто явление электромагнитной индукции. Первоначально данное явление Фарадей обнаружил для стационарных по отношению друг к другу проводников при замыкании и размыкании цепи. Чуть позднее ученый показал, что явление электромагнитной индукции обнаруживается при движении катушек с токами друг по отношению к другу. 17 октября Фарадей отметил в лабораторном журнале, что обнаружил индукционный ток во время введения и удаления магнита в (из) катушку. За один месяц Фарадей определил все основные особенности явления электромагнитной индукции.

Опыты Фарадея

В настоящее время классическими опытами Фарадея по обнаружению явления электромагнитной индукции являются следующие эксперименты:

  1. Гальванометр замыкают на соленоид. В соленоид вдвигается (или выдвигается из него) постоянный магнит. При перемещении магнита фиксируют отклонение стрелки гальванометра, что означает возникновение индукционного тока. При увеличении скорости перемещения магнита по отношению к катушке отклонение стрелки увеличивается. Замена полюсов магнита вызывает изменение направления отклонения стрелки гальванометра. Отметим, что магнит можно оставить неподвижным и перемещать соленоид относительно магнита.
  2. В этом эксперименте используются две катушки. Одна вставлена в другую. Концы одной из катушек соединяют с гальванометром. Через другую катушку пропускается электрический ток. Стрелка гальванометра претерпевает отклонения, когда происходит включение (выключение) тока, его изменение (увеличение или уменьшение) или если катушки движутся относительно друг друга. Направление отклонения стрелки гальванометра противоположны при включении и выключении тока (уменьшении - увеличении силы тока).

При обобщении результатов своих экспериментов Фарадей отметил, что индукционный ток возникает всякий раз, когда происходит изменение потока магнитной индукции, сцепленного с контуром. При этом величина индукционного тока не связана со способом изменения потока, а зависит от скорости его изменения. Эмпирически Фарадей доказывал, что величина угла отклонения стрелки гальванометра связана со скоростью перемещения магнита (скоростью изменения силы тока, скоростью перемещения катушек относительно друг друга).

Своими опытами Фарадей показал, что сила тока индукции в проводящем контуре пропорциональна скорости изменения количества линий магнитной индукции, которые проходят через поверхность, которую ограничивает рассматриваемый контур.

На основе опытов Фарадея Максвелл сформулировал основной закон электромагнитной индукции. В соответствии с этим законом электродвижущая сила индукции в замкнутом контуре равна скорости изменения магнитного потока () сквозь поверхность, которую ограничивает этот контур:

где , - магнитный поток ( - угол между вектором и нормалью к плоскости контра). Минус отображает правило Ленца.

Значение опытов Фарадея заключено в том, что через явления электромагнитной индукции проявляется взаимосвязь электрического и магнитного полей. Электрическое поле, которое возникает при изменении магнитного поля, имеет иную природу, нежели электростатическое поле. Оно не имеет непосредственной связи с электрическими зарядами, и его линии напряженности не могул на них начинаться и заканчиваться. Эти линии поля подобны линиям магнитной индукции и являются замкнутыми линиями. Это электрическое поле является вихревым.

Примеры решения задач

ПРИМЕР 1

Задание Магнитный поток, проходящий через контур проводника, имеющего сопротивление 0,03 Ом за время равное 2 с изменился на 0, 0012 Вб. Какова сила индукционного тока в проводнике? Считайте, что изменение потока происходит равномерно.
Решение Если изменение магнитного потока происходит равномерно, то основной закон электромагнитной индукции можно записать как:

Помимо этого, нас интересует модуль ЭДС индукции, поэтому закон Фарадея преобразуем к виду:

По закону Ома силу тока в проводнике найдем как:

Используем выражения (1.2) и (1.3), имеем:

Проведем вычисления силы тока индукции:

Ответ А

ПРИМЕР 2

Задание Проволочный виток расположен в однородном магнитном поле так, что вектор магнитной индукции перпендикулярен плоскости витка. Виток замкнут на гальванометр (сопротивление соединительных проводов можно не учитывать). Площадь витка равна S, его сопротивление R. Виток поворачивают. При этом гальванометр показывает, что изменение заряда при повороте составило величину dQ. Каков угол поворота витка ()?
Решение Сделаем рисунок.

За основу примем закон Фарадея для электромагнитной индукции в виде:

По закону Ома для проводящего витка имеем:

где силу тока определим как:

где -заряд, проходящий за время , или изменение заряда, которое показывает гальванометр. Используя формулы (2.1) - (2.3), получим:

В первом эксперименте на деревянную или картонную катушку была намотана медная проволока, между ее витками – вторая проволока, изолированная от первой хлопчатобумажной нитью (рис. 2). Одна из спиралей соединялась с гальванометром, другая – с сильной батареей из 100 пар пластин. При замыкании и размыкании электрической цепи стрелка гальванометра слабо отклонялась. Но при непрерывном прохождении тока через первую спираль гальванометр оставался неподвижным.

Очевидно, во вторичной цепи возникал ток. Но почему только при замыкании и размыкании первичной цепи? А каковы свойства этого тока? Поместив внутрь спирали, включенной во вторичную цепь, стальную иглу, Фарадей обнаружил, что она намагничивается индуктированным током. Следовательно, этот ток обладает теми же свойствами, что и ток, полученный от гальванической батареи.

Но почему все-таки стрелка гальванометра неподвижна, когда ток проходит по первой спирали и даже нагревает ик, а великий экспериментатор оставался наедине со своими сомнениями.

Было очевидно, что, поскольку спирали между собой электрически не соединены, первая действует на вторую через окружающую их среду. Естественно было предположить, как повлияет на отклонение стрелки гальванометра замена деревянной катушки железным кольцом? Ведь железо легко намагничивается током (рис. 3).

Оказалось, что стрелка отклоняется на больший угол, т. е. среда, окружающая проводник с током, играет активную роль и может усиливать явление индукции.

Отметим, кстати, что в опыте с железным кольцом и двумя спиралями можно увидеть прообраз простейшей конструкции трансформатора.

Стремясь выяснить причину возникновения индукционного тока только при замыкании и размыкании первичной цепи, Фарадей пытался логически представить физический процесс этого явления. При замыкании и размыкании цепи возникало и исчезало магнитное поле, создаваемое током. Другими словами, происходило изменение магнитного состояния среды, окружавшей первичную и вторичную спирали. Но ведь магнитное состояние среды можно получить и без электрического тока, применяя обыкновенные стержневые постоянные магниты.

Этот опыт Фарадей осуществил 24 сентября 1831 года. Он обмотал железный цилиндр медной изолированной проволокой, соединив ее концы с гальванометром. Цилиндр был помещен между двумя постоянными стержневыми магнитами, которые внизу соприкасались разноименными полюсами (рис. 4а). При смыкании и размыкании концов магнитов стрелка гальванометра отклонялась. Это явление Фарадей назвал уже «магнитно-электрической», а не «вольта-электрической индукцией». Позднее он подчеркнул, что принципиальной разницы между этими явлениями нет, и предложил название «электромагнитная индукция».

Проходит более двух недель, и 17 октября 1831 года Фарадей ставит самый убедительный эксперимент, дающий прямой ответ на поставленную задачу. Если изменение магнитного поля, вызванное размыканием и замыканием магнитов, возбуждает в катушке ток, то это изменение можно вызвать еще более просто.

На картонную катушку была намотана спираль из медной проволоки, соединявшейся концами с гальванометром (рис. 4б). Фарадей взял цилиндрический магнитный брусок и далее, пишет он в своем журнале, «... быстрым движением втолкнул магнит внутрь спирали на всю его длину, и стрелка гальванометра испытала толчок. Затем я так же быстро вытащил магнит... и стрелка качнулась, но в противоположную сторону. Эти качания стрелки повторялись всякий раз, как магнит вталкивался или выталкивался. Это значит, что электрическая волна возникает только при движении магнита, а не в силу свойств, присущих ему в покое».

Итак, «магнетизм превращался в электричество» – гениальная гипотеза ученого была убедительно подтверждена!

А через несколько дней Фарадей осуществляет еще один эксперимент, с помощью которого наглядно объясняет явление, открытое Араго, и показывает возможность егнита вышеописанным образом, я полагаю, что опыт г-на Араго может стать новым источником получения электричества, и надеялся, что... мне удастся сконструировать электрическую машину» (курсив Фарадея). Опыт заключался в следующем. Фарадей принес в лабораторию большой подковообразный электромагнит, хранящийся до сих пор в музее Лондонского Королевского общества (рис. 5). К полюсам магнита он прикрепил «два стальных бруска» и в промежуток между ними ввел край медного диска. Край диска и его ось были соединены посредством щеток с гальванометром. При вращении диска стрелка гальванометра «показывала наличие в нем электрического тока», причем стрелка испытывала не мгновенный толчок, а все время находилась в отклоненном положении, пока диск вращался. Это был первый в мире электромашинный генератор («диск Фарадея»), получивший позднее название униполярного генератора. С него начинается история электрических машин.

Действие своего генератора Фарадей объяснял так: медный диск можно представить в виде колеса с бесконечно большим числом спиц – радиальных проводников. При вращении диска эти спицы-проводники пересекают магнитные силовые линии, в них возникает индуктивный ток.

Создание первого электромашинного генератора обусловило зарождение и последующее бурное развитие не только электротехники, но и многих других отраслей науки и техники, связанных с электромагнитными явлениями, в том числе радиотехники и электросвязи.

Еще в 90-х годах XIX века известный сербский ученый Н. Тесла построил несколько типов электрических генераторов высокой частоты. В России первый высокочастотный генератор, использованный для получения радиоволн, был создан в 1912 году будущим членом-корреспондентом АН СССР В.П. Вологдиным. В 1922-м он создал высокочастотный генератор мощностью 150 кВт и частотой 15 кГц, который был использован для осуществления радиосвязи между Москвой и Нью-Йорком в 1925 году. Широкое применение нашли также дуговые электрические генераторы, дававшие возможность получения электрической дуги как источника электромагнитных волн. Незаменимым элементом радиотехнических устройств является трансформатор, прообраз которого создал Фарадей.

Читателям «Connect’a» будет интересно узнать о находке в архивах Лондонского Королевского общества в 1938 году конверта, в котором хранилось ранее неизвестное письмо Фарадея, датированное 12 марта 1832 года. Письмо начиналось словами: «Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в Архиве Королевского общества». Далее Фарадей писал: «...Результаты исследований привели меня к заключению, что на распространение магнитного воздействия требуется время... которое, очевидно, оказывается весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил похоже на колебание взволнованной водной поверхности или же на звуковые колебания частиц воздуха (что близко к понятию «электрь намерен приложить теорию колебаний к магнитным явлениям, как это сделано по отношению к звуку и является наиболее вероятным объяснением световых явлений. Эти воззрения я хочу проверить экспериментально, но так как мое время занято... я хочу, передавая это письмо на хранение Королевскому обществу, закрепить открытие определенной датой. В настоящее время, насколько мне известно, никто из ученых, кроме меня, не имеет подобных взглядов» (курсив наш – Я.Ш.).

Фарадей утверждает, что распространение магнитных сил «похоже на колебание взволнованной водной поверхности». Никто до него не сумел найти столь простой и ощутимый образ сложного электромагнитного явления.

В тот день, когда Фарадей запечатал свое письмо, великому его соотечественнику Д.К. Максвеллу, сформулировавшему и математически обосновавшему основные положения теории электромагнитного поля, еще не исполнилось и года (он родился 13.06.1831).

Идеей о существовании электромагнитных волн и невиданной скорости их распространения Фарадей создал своеобразный плацдарм для последующего бурного развития электросвязи и радиотехники. Как указывает исследователь творчества Фарадея профессор П.С. Кудрявцев, Фарадей по праву считается «основателем физики электромагнитного поля».

Он впервые открыл активную роль среды, окружающей проводники с током или магниты. «Линиями магнитных сил, – писал Фарадей, – я называю те линии, которые становятся доступными нашему зрению, когда мы рассматриваем расположение железных опилок вокруг полюсов магнита». Какое зримое, образное описание сложного физического явления. Кстати, и сегодня в школьных физических кабинетах именно так демонстрируются «силовые линии» магнитного поля.

«Фарадей, – писал Максвелл, – своим мысленным оком видел силовые линии, проходящие по всему пространству там, где математики...ничего не видели, кроме расстояния. Фарадей искал сущность явлений в том, что в действительности происходит в среде...» (курсив Максвелла).

Именно Максвеллу принадлежит заслуга в развитии и математической обработке идей Фарадея.

Перелистывая страницы фарадеевского лабораторного журнала (его содержание позднее было изложено в солидном труде), можно только поражаться широте и глубине его творческих поисков. Широко известны открытые им законы электролиза, исследования разряда в вакууме и газах (впоследствии на основе его наблюдений и выводов были открыты рентгеновские лучи и радиоактивность), открытие диамагнетизма и парамагнетизма, установление единой природы различных видов электричества – «животного», гальванического, статического, «магнитного», термоэлектричества, введение понятия «диэлектрик». Им также было открыто явление самоиндукции. При исследовании явлений электролиза Фарадей ввел термины электролиз, электролит, электрод, анод, катод, ион, которые сохранились до наших дней.

Результаты выдающихся экспериментов Фарадея с 1831 года в течение 24 лет регулярно печатались в научном журнале «P великолепный памятник научного творчества Фарадея представляет единственное и неповторимое научное произведение, в котором нашли свое отражение воззрения, мысли и труды великого ученого».

Однако напряженный повседневный труд не мог не сказаться на здоровье ученого, заметно ухудшилась его когда-то феноменальная память. Он стал меньше работать, но еще в семидесятилетнем возрасте проводил эксперименты. Ему было уже за 70, когда он, объехав по океану на лодке несколько маяков, дал авторитетное заключение о целесообразности замены масляных ламп электрическими фонарями.

Всемирно известный ученый оставался человеком исключительной скромности и высоких нравственных качеств. Он много лет получал небольшое жалованье и жил в маленькой квартире с «углем и свечами». И только в последние годы указом короля ему была назначена заслуженная пенсия.

Много лет он читал бесплатные общедоступные лекции в Королевском институте и в течение 25 лет выступал в дни Рождественских каникул с лекциями для юношества, сопровождавшимися замечательными опытами. Как популяризатор Фарадей занимает особое место в истории науки. Уже давно считается непревзойденной его популярная книжка «История свечи», которая содержит лекции, прочитанные для детей.

По свидетельству друзей и родных (детей у Фарадея не было), он был в высшей степени добрым и жизнерадостным человеком, в горе и несчастье первым приходил на помощь. Не забывая о своем происхождении, Фарадей всегда оказывал внимание простым и бедным людям.

Однако здоровье Фарадея все ухудшалось, и в 1865 году он подал заявление об освобождении от должности заведующего лабораторией. Но Совет Королевского института, поблагодарив его за многолетнюю плодотворную деятельность, попросил «...нести эти попечения, только поскольку это будет ему приятно...».

25 августа 1867 года, сидя в своем любимом кресле, Майкл Фарадей скончался. Перед смертью он пожелал, чтобы его кончина была отмечена так же скромно, как он провел свою жизнь. На могиле ученого на Хайгетском кладбище в Лондоне установлен простой надгробный памятник, указаны его имя и фамилия, даты рождения и смерти. И ни слова о его всемирной славе!..

За прошедшие 170 лет со дня открытия Фарадеем явления электромагнитной индукции это и многие другие открытия великого физика не устарели. Наоборот, их значение еще более возросло. Достаточно напомнить об успехах космических наук, космических кораблях и межпланетных связях.

Имя Фарадея увековечено открытыми им законами и понятиями: «фарадеево темное пространство», «Фарадея метод измерения», «число Фарадея (постоянная Фарадея)» и, наконец, единица измерения электрической емкости «фарада».

Как пророчески заметил крупнейший немецкий ученый Г. Гельмгольц, до тех пор пока люди пользуются благами электричества, они с благодарностью будут вспоминать Фарад

На частотах до 100 ГГц и более. Вследствие особого характера излучения они могут создавать на местности зоны с высокой плотностью потока энергии (100 Вт/м2и более). 4. Влияние электромагнитного поля на индивидуальное здоровье человека. Человеческий организм всегда реагирует на внешнее электромагнитное поле. В силу различного волнового состава и других факторов электромагнитное поле различных...

Не самостоятельные независимые от материи реальности, а внутренние формы ее бытия»1. Такую неразрывную связь пространства и времени с движущейся материей с успехом показала теория относительности Эйнштейна. Были также попытки использовать теорию относительности идеалистами в качестве доказательства своей правоты. Так, например, американский физик и философ Ф. Франк говорил, что физика ХХ века, ...










ФАРАДЕЙ ПРЕДЛОЖИЛ И ДРУГИЕ РАЗНОВИДНОСТИ ОПЫТА: Замыкание (размыкание) цепи катушки с током Регулирование реостатом силы тока в цепи катушки Внесение (извлечение) катушки с током из катушки, замкнутой на гальванометр Вращение замкнутого контура в магнитном поле


Что же объединяет все эти опыты? Что можно сказать о магнитном потоке, как числе линий магнитной индукции, пронизывающих поверхность, ограниченную контуром? При внесении (изъятии) магнита? При замыкании (размыкании) цепи? При изменении силы тока реостатом? При внесении (изъятии) катушки с током? При вращении контура в магнитном поле? изменяется




ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ Заключается в возникновении электрического тока в замкнутом контуре при любом изменении магнитного потока через поверхность, ограниченную этим контуром Отличие полученного тока от известного нам ранее заключается в том, что для его получения не нужен источник тока



Литература и интернет-ресурсы: А.В.Перышкин, Е.М.Гутник «Физика 9» M_Faraday_Th_Phillips_oil_1842.jpghttp://upload.wikimedia.org/wikipedia/commons/thumb/8/88/M_Faraday_Th_Phillips_oil_1842.jpg/220px- M_Faraday_Th_Phillips_oil_1842.jpg - слайд 1 -слайд слайд слайд 4 -слайд 5 -слайд 6 -слайд 7 -слайд 7 -слайд 7 -слайд 8 -слайд 9 -слайд слайд слайд 11

Страница 2

В октябре Фарадей обратился с пространным письмом к своему другу Стодарту. В этом письме он изложил все обстоятельства крайне досадного инцидента s негодованием и горячностью несправедливо обвиненного человека и по пунктам разбил все возведенные на нег обвинения. Стодарт, как и большинство друзей Фарадея считал, что вокруг этого дела не следует создавать лишнего шума. Фарадей сперва был склонен последовать совету своих друзей, но затем отверг все эти сове ты и решил апеллировать непосредственно к благородству и лояльности самого Волластона. «Я полагаю сэр, - писал он Волластону, прося о свидании, - что поврежу себе в ваших глазах, прибегнув к наиболее простым и прямым средствам для выяснения возникшей недоразумения.»…

Переговоры с Волластоном принесли Фарадею, полное удовлетворение, так как первый признал, что ничего предосудительного в действиях молодого ученого не было. Считая, что недоразумение с Волластоном совершенно забыто, Фарадей спокойно продолжал свои исследования, сосредоточив все внимание на вопросах, связанных с явлениями электромагнитного вращения. Особенно интересовала его попытка заставить проволоку по которой течет электрический ток, вращаться под действием земного магнетизма. После ряда опытов старания Фарадея увенчались успехом. Как и во всех случаях, когда он ставил перед собой какую-либо задачу, oн страстно и упорно добивался цели. И когда, наконец ему в последних числах декабря 1821 г. удалось получить желаемый результат, он с чисто детским восторгом радовался своему успеху. Шурин Фарадея, Джорж Барнард, присутствовавший как раз в это время в лаборатории, рассказывал, что когда проволока начала вра­щаться, то Фарадей взволнованно воскликнул: «Ты ви­дишь, ты видишь, ты видишь, Джордж!». «Никогда, - подчеркивает Джордж, - не забуду я энтузиазма, вы­ражавшегося на его лице, и блеска его глаз».

Этот эксперимент оказался исключитеольно важным для практического применения электричества. Фарадей впервые осуществил непррывное превращение электрической энергии в механическую. Именно 1821 г. надо считать годом возникновения электродвигателя., как устройства, превращающего энергию электрическую в механическую. Возникновение электродвигателей связано с именем Фарадея: он выяснил их физические основы тем самым раскрыл неограниченные просторы для технического творчества многочисленных изобретателей, создавших современные электрические машины.

В литературе принято делить научное творчество Фарадея на три периода.

Второй, это-период знаменитых «Опытных исследований по электричеству», т. е. время с 1830-го по 1840-3 год, когда вследствие расстройства здоровья Фарадея его научное творчество приостанавливается на четыре года.

И, наконец, третий период начинается с 1844 г. когда Фарадей, оправившись от недуга, снова приступил к работе.

Самым знаменательным событием первого периоды было несомненно, открытие явления электромагнитного вращения. Но за первые пятнадцать лет своей научной деятельности Фарадей обогатил науку и рядом другие открытий и ценных исследованию. К концу 1830 г. опубликовал до 60 оригинальных работ, не считая множества заметок и мелких сообщений.

В 1825 г. Фарадей был назначен директором лаборатории Королевского института.

Но важнейшим этапом достижения связанные с именем Фарадея относятся ко второму периоду его деятельности, связанному с « Опытными исследованиями по электричеству»

Как уже было сказано, мысль об обратимости явления Эрстеда зародилась у Фарадея еще в 1822 г С тех пор он, не переставая, думал над этой проблемой. Говорили, что он носил в жилетном кармане маленький магнит, который должен был напомнить ему о поставлена себе задаче - превратить магнетизм в электричество.

Хотя 1822- 1831 гг. были полны кипучей научной деятельности в самых различных областях, тем не менее записной книжке Фарадея мы тогда же находим описание опытов «для получения электричества от магнетизма», правда, неизменно заканчивавшихся выводом: «безрезультатно».

Плодотворные результаты были достигнуты только в 1831 г. Летом этого года Фарадей стал усиленно обдумывать свою идею. Он решил отстраниться от всяко другой работы и все внимание посвятить новым экспериментам. В июле, получил снова предложение от Совета Королевского общества заняться оптическим стеклом, он ответил отказом и целиком занялся, как он это отмечал в лабораторном журнале, «опытом для получения электричества от магнетизма».

Уже 29 августа 1831 г. Фарадей, экспериментируя с прототипом современного трансформатора (рис. 1), наблюдал появление индуктированного электрического тока.

Решающим днем опытов было 17 октября 1831 г. Опыты этого дня завершились получением электрическо­го тока от приближения магнита к проводнику (прово­локе). Это и было собственно центральным моментом во всей серии опытов: задача «превратить магнетизм в электричество» была разрешена.

Все неудачи, которые Фарадей терпел до этого вре­мени, объясняются тем, что в опытах и магнит и про­водник оставались в состоянии покоя. Как говорит Сильванус Томпсон (один из биографов Фарадея), маг­нит мог лежать близ проводника преспокойно сто лет и никакого действия не произвел бы. «Цилиндрический по­лосовой магнит, - гласит запись этого дня, - диаметром в три четверти дюйма и длиной в восемь с половиной дюймов одним концом был вставлен в конец цилиндра с соленоидом (Рис. 2), затем он был быстро внесен

Рис. 2. Соленоид и цилиндрический магнит (схематическое изображение)

внутрь во всю свою длину, и стрелка гальванометра от­клонилась; далее он был удален, и стрелка снова откло­нилась, но в противоположном направлении. Этот эф­фект повторялся каждый раз, когда магнит вносили или удаляли. Из этого следует, что волна электричества со­здавалась от простого приближения магнита, а не от его нахождения in situ2».

Из дальнейшего наибольший интерес представляют опыты, относящиеся к 28 октября 1831 г. Эта дата мо­жет считаться днем рождения прототипа современных динамо-машин - так называемого «медного диска Фарадея. В его записной книжке отмечено, что он «заставил медный диск вращаться между полюсами подковообразного магнита Королевского общества. Ось и край диска были соединены с гальванометром. Стрелка отклонялась, как только диск начинал вращаться».

Исключительно напряженная работа была проделана менее, чем в полтора месяца. Верный своему методу начав работу, довести ее до конца и опубликовать, Фарадей привел в систему все полученные им данные и составил доклад для Королевского общества, который и был им прочитан 24 ноября 1831 г. Этот доклад послу-

Фиг. 3. Медный диск Фарадея (собственноручный рисунок Фарадея).

жил основанием первой серии знаменитых «Опытных ис­следований по электричеству».

Заметим что в первых двух опытах о гальванометре не упоминается, появление индуцированного тока Фарадей наблюдал по отклонению магнитной стрелки, а уже в опыте с медным диском «ось и край диска были соединены с гальванометром»

Гальванометр Фарадей изготовил сам, вот так его описал сам автор.

«гальванометр был изготовлен примитивно, но все же был достаточно чувствителен в отношении своих показаний. Провод был медный с шелковой изоляцией, и содержал 16 или 18 витков. Две швейные иглы были намагничены и пропущены через высушенную соломинку параллельно одна другой. Эта система была подвешена на волокне из сученого шелка, так чтобы нижняя игла находилась внутри витков многократно намотанного провода, а верхняя под ними. Последняя являлась более сильным магнитом и давала устройству ориентировку относительно земли. На рис. 4 показано направление провода и игл, когда был помещен в магнитный меридиан. Для удобства дальнейших ссылок концы проводов отмечены буквами А и В, буквы S и N обозначают южный и северный концы иглы, когда на нее действует только земной магнетизм. Коней иглы N является, следовательно, отмеченным полюсом. Весь прибор был защищен стеклянной банкой; его положение и расстояние относительно большого магнита было такое же, как раньше.

>> Открытие электромагнитной индукции

Глава 2. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электростатическое поле создается неподвижными заряженными частицами, а магнитное поле - движущимися, т. е. электрическим током . Теперь познакомимся с электрическими и магнитными полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, - это теснейшая взаимосвязь между электрическим и магнитным полями. Оказалось, что изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле - магнитное . Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно наблюдается на самом деле. Не существовало бы ни радиоволн, ни света.

§ 8 ОТКРЫТИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

В 1821 г. М. Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий сделан основоположником представлений об электромагнитном поле М. Фарадеем, который был уверен в единой природе электрических и магнитных явлений. Благодаря этому он и сделал открытие, вошедшее в основу устройства генераторов всех электростанции мира, превращающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальванические элементы, аккумуляторы и пр., - дают ничтожную долю вырабатываемой электрической энергии.)

Электрический ток, рассуждал М. Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока? Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: движущийся магнит , или меняющееся во времени магнитное поле, может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем получить электрический ток в катушке с помощью магнита пытался швейцарский физик Колладон. В ходе работы он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, куда Колладон вводил магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром, а кого-нибудь попросить заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки
mob_info