Чем растворить плотный карбонат кальция. Большая энциклопедия нефти и газа

– щелочноземельный элемент 2-й группы периодической системы.

Соединения кальция известны с древних времен, однако до 17 в. об их природе ничего не знали. Египетские строительные растворы, которые исользовались в пирамидах Гизы, были основаны на частично обезвоженном гипсе CaSO 4 ·2H 2 O. Он же является основой всей штукатурки в гробнице Тутанхамона. Римляне использовали строительный раствор из песка и извести (полученной при нагревании известняка CaCO 3): во влажном климате Италии он был более устойчив.

Название элемента – от латинского calx, calcis – известь («мягкий камень»). Оно было предложено Г.Дэви в 1808, выделившим металлический кальций электролитическим методом. Дэви смешивал влажную кальциевую «землю» (оксид кальция CaO) с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама металла, который можно было получить в чистом виде, испарив ртуть.

Кальций является пятым из наиболее распространенных в земной коре элементом и третьим по распространенности металлом (после алюминия и железа). На долю кальция приходится около 1,5% от общего числа атомов земной коры. Во многих частях поверхности Земли имеются значительные осадочные залежи карбоната кальция, которые образовались из остатков древних морских организмов. В них это соединение находится, в основном, в виде минералов двух типов. Чаще встречается ромбоэдрический кальцит, в теплых морях образуется орторомбический арагонит. Представителями минералов первого типа является сам кальцит, а также доломит, мрамор, мел и исландский шпат. Громадными пластами карбоната кальция в виде арагонита образованы Багамы, о-ва Флорида-Кис и бассейн Красного моря. Другие важные минералы – гипс CaSO 4 ·2H 2 O, ангидрит CaSO 4 , флюорит CaF 2 и апатит Ca 5 (PO 4) 3 (Cl,OH,F). Значительное количество кальция находится в природных водах в виде гидрокарбоната (см . ГИДРОСФЕРЫ). Кальций содержится и в организмах многих животных. Гидроксоапатит Ca 5 (PO 4) 3 (OH) является основой костной ткани позвоночных. Из карбоната кальция, в основном, состоят кораллы, раковины моллюсков, жемчуг, яичная скорлупа.

Металлический кальций получают электролизом расплавленного хлорида кальция, который является побочным продуктом в процессе Сольве или образуется в реакции между соляной кислотой и карбонатом кальция.

Сравнительно мягкий блестящий металл имеет бледно-желтую окраску. Он химически менее активен, чем другие щелочноземельные металлы, так как на воздухе покрывается защитной оксидно-нитридной пленкой. Его даже можно обрабатывать на токарном станке.

Кальций активно реагирует с неметаллами. При нагревании в кислороде и на воздухе воспламеняется. С водой кальций реагирует с выделением водорода и образованием гидроксида кальция. Он растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Са(NH 3) 6 .

Металлический кальций используется, главным образом, как легирующая добавка. Так, введение кальция повышает прочность алюминиевых подшипников. С помощью кальция регулируют содержание углерода в чугуне и удаляют висмут из свинца. Он используется для очистки стали от кислорода, серы и фосфора. Его применяют и для поглощения кислорода и азота, в частности, для удаления примесей азота из технического аргона. Он служит восстановителем при производстве других металлов, таких как хром, цирконий, торий и уран. Например, металлический цирконий можно получить из его диоксида: ZrO 2 + 2Ca = Zr + 2CaO. Кальций также непосредственно реагирует с водородом с образованием гидрида кальция СаН 2 , который является удобным источником водорода.

Наиболее важным галогенидом кальция является фторид CaF 2 , так как в виде минерала (флюорит) он является единственным промышленно важным источником фтора. Белый тугоплавкий фторид кальция мало растворим в воде, что используется в количественном анализе.

Хлорид кальция CaCl 2 также имеет большое значение. Он является компонентом рассолов для холодильных установок и для заполнения шин тракторов и другого транспорта. С помощью хлорида кальция удаляют снег и лед с дорог и тротуаров. Эвтектическая смесь CaCl 2 –H 2 O, содержащая 30 масс. % CaCl 2, плавится при –55° С. Эта температура существенно ниже, чем в случае смеси хлорида натрия с водой, для которой минимальная температура плавления составляет –18° С. Хлорид кальция применяется и для защиты угля и руды от замерзания при транспортировке и хранении. Его используют в бетонных смесях для ускорения начала схватывания, повышения начальной и конечной прочности бетона. Хлорид кальция является отходом многих химико-технологических процессов, в частности, крупнотоннажного производства соды. Однако потребление хлорида кальция значительно уступает его производству, поэтому около содовых заводов образовались целые озера, наполненные рассолом CaCl 2 . Такие пруды-накопители можно видеть, например, в Донбассе.

Наиболее широкое применение из соединений кальция имеют карбонат, оксид и гидроксид. Самая распространенная форма карбоната кальция – известняк. Смешанный карбонат кальция и магния носит название доломит. Известняк и доломит используются в качестве строительных материалов, дорожных покрытий, реагентов, понижающих кислотность почвы. Их добывают во всем мире в огромных количествах. Карбонат кальция CaCO 3 является также важнейшим промышленным реагентом, который необходим для получения оксида кальция (негашеной извести) CaO и гидроксида кальция (гашеной извести) Ca(OH) 2 .

Оксид и гидроксид кальция являются ключевыми веществами во многих областях химической, металлургической и машиностроительной промышленности. Известь СаО производится в огромных количествах во многих странах и входит в десятку химических веществ с максимальным объемом производства.

Большие количества извести расходуются при производстве стали, где она используется для удаления фосфора, серы, кремния и марганца. В кислородно-конверторном процессе на тонну стали требуется 75 кг извести. Она заметно продлевает жизнь огнеупорной облицовки. Известь используется также в качестве смазочного материала при вытягивании стальной проволоки и нейтрализации отходов травильных жидкостей, содержащих серную кислоту. Еще одно применение в металлургии – производство магния.

Известь – наиболее распространенный химический реагент для обработки источников воды для питья и промышленности. Ее используют вместе с квасцами или солями железа для коагуляции суспензий и удаления помутнения, а также для смягчения воды за счет удаления временной (гидрокарбонатной) жесткости (см . )

Еще одна область применения извести – нейтрализация кислотных растворов и промышленных отходов. С ее помощью устанавливают оптимальное значение рН для биохимического окисления сточных вод. Известь используют и в газопромывателях для удаления диоксида серы и сероводорода из газовых отходов электростанций, работающих на ископаемом топливе, и печей для плавки металлов.

В химической промышленности известь используется при производстве карбида кальция (для последующего получения ацетилена), цианамида кальция и многих других веществ. Важным потребителем является также стекольная промышленность. Наиболее распространенные стекла содержат в своем составе около 12% оксида кальция. Инсектицид арсенат кальция, который получают нейтрализацией мышьяковой кислоты известью, широко используется для борьбы с хлопковым долгоносиком, яблонной плодожоркой, табачным червем, колорадским жуком. Важными фунгицидами являются известково-сульфатные аэрозоли и бордосские смеси, которые получают из сульфата меди и гидроксида кальция.

Большие количества гидроксида кальция требуются для целлюлозно-бумажной промышленности. На бумажных предприятиях отработанный раствор карбоната натрия обрабатывают известью для регенерации каустической соды (гидроксида натрия NaOH), используемой в технологическом процессе. Около 95% образовавшейся суспензии карбоната кальция высушивается и вновь обжигается во вращающихся печах для регенерации оксида кальция. Отбеливающие жидкости для бумажной пульпы, содержащие гипохлорит кальция, получают реакцией извести с хлором.

Производство высококачественной бумаги требует использования специально осажденного карбоната кальция. Для этого сначала обжигают известняк и собирают по отдельности диоксид углерода и оксид кальция. Последний затем обрабатывают водой и вновь переводят в карбонат. Тип образующихся кристаллов, а также их размеры и форма зависят от температуры, рН, скорости смешивания, концентраций и присутствия добавок. Мелкие кристаллы (менее 45 мкм) часто покрывают жирными кислотами, смолами или смачивающими веществами. Карбонат кальция придает бумаге яркость, непрозрачность, восприимчивость к чернилам и гладкость. В более высоких концентрациях он нейтрализует сильный глянец, вызываемый добавками каолина, и дает тусклый матовый оттенок. Такая бумага может содержать 5–50% (по массе) осажденного карбоната кальция. СаСО 3 также используется как наполнитель в резинах, латексах, красках и эмалях, а также в пластиках (около 10% по массе) для улучшения их термостойкости, жесткости, твердости и обрабатываемости.

В быту и медицине осажденный карбонат кальция применяется как средство, нейтрализующее кислоту, мягкий абразив в зубных пастах, источник дополнительного кальция в диетах, составная часть жевательной резинки и наполнитель в косметике.

Известь применяется и в молочной промышленности. Известковую воду (насыщенный раствор гидроксида кальция) часто добавляют к сливкам при отделении их от цельного молока, чтобы понизить их кислотность перед пастеризацией и превращением в масло. Снятое молоко затем подкисляют, чтобы отделить казеин, который смешивают с известью для получения казеинового клея. После ферментации оставшегося снятого молока (сыворотки) к нему добавляют известь, чтобы выделить лактат кальция, который используют в медицине или как сырье для последующего получения молочной кислоты. Производство сахара также связано с использованием извести. Для осаждения сахарата кальция, который затем очищают от фосфатных и органических загрязнений, проводят реакцию сырого сахарного сиропа с известью. Последующее действие диоксида углерода приводит к образованию нерастворимого карбоната кальция и очищенной растворимой сахарозы. Цикл повторяют несколько раз. Тростниковый сахар обычно требует около 3–5 кг извести на тонну, а свекловичный сахар – в сто раз больше, то есть около 1/2 тонны извести на тонну сахара.

Можно отметить также частную область применения карбоната кальция в виде перламутра. Это материал, образованный тонкими слоями карбоната кальция в форме арагонита, соединенными белковым клеем. После полировки он переливается всеми цветами радуги и становится декоративным, очень прочен, хотя на 95% состоит из карбоната кальция.

Сульфат кальция обычно существует в виде дигидрата (гипс), хотя добывают и безводный сульфат кальция (ангидрит). Известен также алебастр – компактная, массивная, мелкозернистая форма CaSO 4 ·2H 2 O, напоминающая мрамор. Если гипс прокалить при 150–165 °С, он теряет примерно 2/3 кристаллизационной воды и образует полугидрат CaSO 4 ·0,5H 2 O, известный также как строительный алебастр, или «парижская штукатурка» (так как его первоначально получали из гипса, добытого на Монмартре). Нагревание при более высокой температуре приводит к образованию различных безводных форм.

Хотя гипс добывают не в таких количествах, как известняк, он остается промышленно важным материалом. Почти весь прокаленный гипс (95%) используется для производства полуфабрикатов – в основном, стеновых панелей, а остальное количество – в промышленных и строительных штукатурках. Поглощая воду, полугидрат незначительно расширяется (на 0,2–0,3%), и это главное при его использовании для лепнины и штукатурки. Применяя добавки, можно менять степень его расширения в пределах 0,03–1,2%.

Для кальция не очень характерно образование комплексных соединений. Кислородсодержащие комплексы, например, с ЭДТА или полифосфатами, имеют большое значение в аналитической химии и для удаления ионов кальция из жесткой воды.

Кальций относится к числу макроэлементов. Его содержание в организме взрослого человека (в расчете на массу 65 кг) составляет 1,3 кг. Он необходим для формирования костей и зубов, поддержания сердечного ритма и свертывания крови. Основным источником поступления кальция в организм служат молоко и молочные продукты. Суточная потребность составляет 0,8 г в сутки. Всасыванию катионов кальция способствуют молочная и лимонная кислоты, в то время как фосфат-ион, оксалат-ион и фитиновая кислота затрудняют всасывание кальция из-за образования комплексов и малорастворимых солей. В организме есть сложная система хранения и высвобождения кальция.

Использование кальция в качестве строительного материала костей и зубов связано с тем, что ионы кальция не используются в клетке. Концентрацию кальция контролируют особые гормоны, их совместное действие сохраняет и поддерживает структуру костей.

Предполагается, что ионы кальция, связываясь с мембраной нерва, влияют на ее проницаемость для других катионов. Очевидно, он замещает ионы магния и тем самым активирует некоторые ферменты. Поступление ионов кальция может быть сопряжено с внесением фосфата, который поэтому называют переносчиком кальция.

Установлено, что регулятором ионов кальция в различных типах мышц является саркоплазматический ретикулум (СР). Ионы кальция накапливаются в кальциесвязывающих белках, например в кальсеквестрине. Последний связывает примерно 43 иона Са 2+ на моль белка. Мышечное сокращение связано с освобождением ионов кальция из СР и его связыванием на активных центрах мышечных волокон. Концентрация ионов кальция в саркоплазме за несколько миллисекунд повышается в 100 раз. Вынужденное истечение ионов Са 2+ из СР происходит очень быстро. Непосредственно после освобождения ионов кальция СР начинает накачивать их обратно. Сокращение мышц возникает в результате появления нервного импульса в двигательном нерве, оканчивающемся в мышечном волокне, что вызывает высвобождение ионов кальция из его запасов.

Механизм свёртывания крови представляет собой каскадный процесс, многие этапы которого зависят от присутствия ионов кальция, которые активируют соответствующие ферменты.

Накопление кальция является характерной особенностью роста костей зубов, раковин и других подобных структур. С другой стороны, повышение содержания кальция в нетипичных участках приводит к образованию камней, остеоартриту, катарактам и артериальным нарушениям.

Greenwood N.N., Earnshaw A. Chemistry of the Elements . Oxford: Butterworth, 1997
Кольман Я., Рём К.-Г. Наглядная биохимия : Пер. с нем. – М., Мир, 2000

Изобретение относится к химической технологии азотнокислотной переработки фосфатного сырья с получением карбоната кальция путем конверсии нитрата кальция в производстве NPK-удобрений. Способ получения карбоната кальция включает: взаимодействие нитрата кальция с раствором карбоната аммония, выделение осадка целевого продукта из суспензии, его промывку, термообработку при температурах 400…700°С и измельчение. Изобретение позволяет упростить технологию переработки карбоната кальция - побочного продукта при получении NPK-удобрений в наполнитель для применения в различных отраслях промышленности. 1 з.п. ф-лы, 2 табл.

Способ относится к химической технологии азотнокислотной переработки фосфатного сырья с получением карбоната кальция путем конверсии нитрата кальция в производстве NPK-удобрений.

Изобретение может найти применение в производстве карбоната кальция, используемого в качестве наполнителя в полимерной, лакокрасочной и других отраслях промышленности.

Карбонат кальция является побочным продуктом при производстве NPK-удобрений типа нитроаммофоски, и его получение основано на взаимодействии (конверсии) раствора нитрата кальция с раствором карбоната аммония:

Ca(NO 3) 2 +(NH 4) 2 CO 3 →CaCO 3 ↓+2NH 4 NO 3

Получаемый осадок карбоната кальция выделяют и промывают на фильтрах от маточного раствора и сушат. Готовый продукт представляет собой мелкодисперсный порошок, содержащий до 97% основного вещества (Комплексная азотнокислотная переработка фосфатного сырья / Гольдинов А.Л., Копылев Б.А. и др. - Л.: Химия, 1982. - 207 с.).

Одним из недостатков способа является неизбежное в производственных условиях загрязнение получаемого карбоната кальция водорастворимыми азотсодержащими соединениями маточного раствора (NH 4 NO 3 , Са(NO 3) 2 , (NH 4) 2 CO 3 , NH 3 и др.). Наличие водорастворимых примесей ограничивает применение продукта в качестве наполнителя в производстве пластмасс, лакокрасочных материалов, резинотехнических изделий и других материалов, так как в этом случае возможно их взаимодействие с органическими веществами, терморазложение при повышенных температурах, ухудшение эксплуатационных свойств наполненных продуктов. Кроме того, наличие гигроскопичных солей NH 4 NO 3 и Са(NO 3) 2 может привести к потере сыпучести карбоната кальция в процессах транспортировки и хранения, затруднить его дозирование и диспергирование.

Известен способ получения карбоната кальция с низким содержанием водорастворимых примесей (RU 2281921 С1, опубл. 20.08.2006). По этому способу карбонат кальция получают при 50-80°С и избытке раствора карбоната аммония 0,05-0,5% в пересчете на CO 2 своб., концентрацию раствора нитрата кальция поддерживают в пределах 10-13% разбавлением раствором аммиачной селитры. Выделенный фильтрованием осадок промывают и высушивают. Промывку ведут при соотношении Т:Ж - (1-3):1 в одну или две стадии с подачей фильтрата со второй стадии на первую, что позволяет снизить содержание аммонийных водорастворимых примесей в карбонате кальция до 0,03-0,2% в пересчете на нитрат аммония.

К недостаткам данного способа относятся увеличение нагрузки на оборудование за счет введения в процесс дополнительных количеств раствора аммиачной селитры и неполная отмывка водорастворимых примесей.

Неполная отмывка обусловлена тем, что при массовой кристаллизации при высоких значениях пересыщения быстрый рост частиц карбоната кальция протекает по полинуклеарному механизму с образованием частиц в виде поликристаллических сростков сферической формы. При этом неизбежно происходит объемная сорбция (окклюзионный захват) маточного раствора в межкристаллитном пространстве и внутренних порах растущих частиц карбоната кальция. В этом случае повышение эффективности промывки осадка карбоната кальция вытеснением или разбавлением не приведет к полному удалению захваченных водорастворимых примесей. Так как получаемый карбонат кальция по своему дисперсному составу не соответствует требованиям к наполнителям, то для его использования в данном направлении обязательной стадией является тонкое измельчение. При разрушении частиц соответственно будет происходить раскрытие межкристаллитных полостей и выход ранее окклюдированных примесей на образующуюся поверхность, что увеличит содержание водорастворимых соединений в измельченном продукте. В свою очередь организация дополнительной стадии отмывки уже измельченного продукта не может быть признана рациональным решением вопроса вследствие трудностей с фильтрацией и промывкой ультрадисперсных частиц, усложнением технологической схемы, необходимостью утилизации промывных вод и т.п. Аналогичные проблемы возникнут и при применении измельчения в водной среде.

Наиболее близким по своей сущности к предлагаемому способу является способ получения осажденного карбоната кальция из карбоната кальция, полученного в производстве NPK-удобрений (US 6790424 В2, опубл. 14.09.2004), путем проведения следующих последовательных стадий:

Получения карбоната кальция в производстве NPK-удобрений;

Термообработки влажного карбоната кальция в течение 30-90 минут при температурах 850-950°C с получением оксида кальция СаО;

Поглощения выделяющихся при обжиге водяных паров и газов (СО 2 , NH 3 , NOx) в скруббере;

Измельчения и охлаждения продукта обжига до 40-50°С;

Гашения водой с получением суспензии известкового молока концентрацией 15…23% по твердой фазе;

Удаления из суспензии известкового молока тяжелых частиц седиментацией, или влажным рассевом через сито с размером ячеек 60-100 меш, или обоими способами;

Разбавления суспензии известкового молока до содержания твердых веществ в интервале 10…20%;

Карбонизации известкового молока при 25…45°С газовой смесью СО 2 -воздух с объемной долей СО 2 в интервале от 25 до 75% и скоростью пропускания через суспензию 10-15 см/сек;

Выделения фильтрацией или центрифугированием осадка карбоната кальция и его сушки.

Получаемый по данному способу осажденный карбонат кальция имеет чистоту более 97%, яркость более 96%, насыпную плотность 0,40-0,65 г/мл, средний размер частиц 5-20 мкм и может быть использован в производстве пластмасс, резины, красок и других продуктов.

Недостатками способа являются сложность и многостадийность процесса, необходимость использования для получения продукта дополнительных веществ - углекислого газа и воды.

Задачей, на решение которой направлено изобретение, является упрощение технологии переработки карбоната кальция - побочного продукта при получении NPK-удобрений в наполнитель для применения в различных отраслях промышленности.

Технический результат заключается в упрощении способа получения карбоната кальция, удовлетворяющего требованиям к дисперсным наполнителям для пластмасс, лаков, красок и других продуктов.

Технический результат достигается тем, что в предлагаемом способе, включающем взаимодействие раствора нитрата кальция с раствором карбоната аммония, выделение и промывку осадка целевого продукта, термообработку и измельчение, термообработку карбоната кальция ведут при температуре 400-700°С.

Отличием способа является проведение термообработки при температурах 400-700°С. При этом термообработке подвергают влажный карбонат кальция после промывки или предварительно высушенный до влажности менее 1%.

Пробу карбоната кальция, полученного в действующем производстве NPK-удобрений, с остаточной влажностью 11,5% после фильтрации и промывки подвергают термообработке при различных температурах в муфельной печи. Время обработки поддерживают постоянным на уровне 1 часа. Пробу после термообработки измельчают в течение 10 минут в лабораторной вибрационной мельнице до дисперсности, соответствующей 100%-ному проходу через сито с размером ячеек 45 мкм. Измельченный продукт анализируют на содержание водорастворимых азотсодержащих примесей, как их общего содержания с учетом связанных форм путем полного кислотного разложения пробы, так и в поверхностно-связанной форме с использованием водной экстракции. Измеряют также показатель pH водной суспензии. Для сравнения проводится аналогичный анализ измельченной пробы карбоната кальция без предварительной термообработки. Результаты представлены в таблице 1.

Опыты осуществляют согласно описанию примера 1, но в качестве исходной пробы берут карбонат кальция, предварительно высушенный до содержания влаги 1% (таблица 2).

Удаление водорастворимых азотсодержащих примесей как в доступной поверхностно-адсорбированной форме, так и в связанной окклюдированной форме термообработкой позволяет получать при измельчении карбоната кальция продукт, удовлетворяющий требованиям к наполнителям по содержанию водорастворимых примесей. По-видимому, снижение содержания водорастворимых примесей обусловлено термической неустойчивостью азотсодержащих соединений при высоких температурах. Известно (Технология минеральных солей. Ч.2 / Позин М.Е и др. - Химия, 1970. - 1558 с.), что заметное разложение нитрата аммония начинается при ~150°С, а интенсивно процесс протекает при нагреве выше 200°С. При 500°С и выше нитрат кальция полностью диссоциирует на СаО и NO 2 .

Нижний предел заявленного интервала температуры термообработки составляет 400°С, так как при данной температуре происходит заметное снижение содержания водорастворимых веществ в полученном продукте. Верхний предел заявленного интервала ограничивается температурой 700°С, так как при более высокой температуре, как видно из результатов, заметной становится диссоциация карбоната кальция, что видно по увеличению pH.

Полученный по предлагаемому способу карбонат кальция имеет следующие физико-химический свойства: средний размер частиц ~5 мкм, остаток на сите №045 не более 0,1%, белизну ~95%, насыпную плотность 0,6-0,7 г/см 3 , содержание водорастворимых примесей менее 0,1% и может применяться в качестве дисперсного наполнителя при производстве пластмасс, лакокрасочных материалов и других продуктов.

Таким образом, при температуре термообработки в интервале 400…700°С обеспечивается решение поставленной задачи, причем как для влажного карбоната кальция, так и предварительно высушенного. Ограничение верхнего предела влажности сухого карбоната кальция 1% связано с ухудшением его свойств при более высокой влажности, что проявляется в потере сыпучести и комковании продукта при хранении и транспортировке.

1. Способ получения карбоната кальция, включающий взаимодействие нитрата кальция с раствором карбоната аммония, выделение осадка целевого продукта из суспензии, его промывку, термообработку, измельчение, отличающийся тем, что термообработку проводят при 400-700°С.

2. Способ по п.1, отличающийся тем, что карбонат кальция перед термообработкой сушат до влажности менее 1%.

Похожие патенты:

Изобретение относится к химической технологии, в частности к получению высоко дисперсного углекислого кальция CaCO3 , - карбоната кальция, который является исключительно важным полупродуктом для различных отраслей химической и других отраслей промышленности

Изобретение может быть использовано в химической, лакокрасочной и бумажной промышленности. Для изготовления водных минеральных материалов а) обеспечивают, по меньшей мере, один минеральный материал в форме водной суспензии или в сухой форме, b) обеспечивают, по меньшей мере, один частично или полностью литий-нейтрализованный водорастворимый органический полимер, выбранный из группы гомополимеров акриловой или метакриловой кислоты и/или сополимеров акриловой и/или метакриловой кислоты с одним или несколькими акриловыми, виниловыми или аллиловыми мономерами, причем мольная доля не нейтрализованных кислотных групп находится в диапазоне от 0% до 10%, с) объединяют, по меньшей мере, один частично или полностью литий-нейтрализованный водорастворимый органический полимер из стадии b) с, по меньшей мере, одним минеральным материалом из стадии а). Полученные минеральные материалы или их водные суспензии используют при получении бумаги, пластиков и красок. Изобретение позволяет получить материал, имеющий стабильный рН, низкую вязкость по Брукфильду, которая остается стабильной со временем, и требующий пониженное содержание диспергатора и/или способствующего измельчению агента. 8 н. и 26 з.п. ф-лы, 13 табл., 13 пр.

Изобретение может быть использовано в химической промышленности. Способ производства содержащих карбонат кальция материалов, поверхность частиц которых имеет улучшенные свойства адсорбции диспергатора, включает следующие стадии: a) получение, по меньшей мере, одного содержащего карбонат кальция материала в виде водной суспензии или в сухом виде; b) получение, по меньшей мере, одного содержащего ионы лития соединения, выбранного из группы, в которую входят гидроксид лития, или оксид лития, или неорганические и/или органические мономерные соли лития, выбранные из группы, в которую входят соли одно- или многоосновных кислот, например карбонат лития, сульфаты лития, цитрат лития, гидрокарбонат лития, ацетат лития, хлорид лития, фосфат лития, в сухом виде или в водном растворе, и их смеси; c) сочетание, по меньшей мере, одного содержащего ионы лития соединения по стадии b) и, по меньшей мере, одного содержащего карбонат кальция материала по стадии a). Изобретение позволяет получить содержащий карбонат кальция материал в сухом виде или в виде суспензии, имеющей высокую концентрацию сухого вещества и одновременно низкую вязкость по Брукфильду, которая сохраняет устойчивость с течением времени, и хорошую буферную способность по отношению к pH. 7 н. и 37 з.п. ф-лы, 2 ил., 10 табл., 9 пр.

Изобретение может быть использовано в биологических и медицинских исследованиях. Пористые частицы карбоната кальция формируют в результате реакции CaCl2+2NaHCO3→CaCO3↓+2NaCl+2H+, причем водный раствор квантовых точек, модифицированных избыточным количеством меркаптоуксусной кислоты, имеющей концентрацию 0,05-4 мг/мл, при интенсивном перемешивании приливают к 0,3 М раствору NaHCO3. Полученную взвесь, содержащую пористые частицы карбоната кальция с включенными квантовыми точками, 1-3 раза промывают водой и однократно - этанолом, обрабатывая ультразвуком после каждой промывки. Затем полученные частицы покрывают полиэтиленимином или 6-ю слоями водорастворимых полиэлектролитов из ряда, включающего ДЭАЭ-декстран, хитозан, каррагинан. Изобретение обеспечивает сокращение времени получения пористых частиц карбоната кальция со 100% включенных квантовых точек. 1 з.п. ф-лы, 6 пр.

Изобретение может быть использовано в химической промышленности при переработке фосфогипса - отхода производства экстракционной фосфорной кислоты. Для получения высокочистого углекислого кальция и азотно-сульфатного удобрения проводят конверсию фосфогипса раствором карбоната аммония с получением раствора сульфата аммония и фосфомела. Фосфомел растворяют в азотной кислоте, отделяют нерастворимый остаток фильтрацией от раствора нитрата кальция. Далее проводят взаимодействие раствора нитрата кальция с карбонатом аммония с получением продукционной пульпы углекислого кальция в растворе нитрата аммония, осаждение из нее высокочистого углекислого кальция и переработку раствора нитрата аммония в азотно-сульфатное удобрение. Продукционную пульпу разделяют на две части, одну из которых подают на фильтрацию для отделения осадка высокочистого углекислого кальция, а вторую - на предварительное смешение с раствором карбоната аммония до концентрации карбоната аммония в жидкой фазе, равной 4,0-8,0%. В процессе осаждения высокочистого углекислого кальция поддерживают температуру 40-45°С и концентрацию избыточного карбоната аммония в жидкой фазе пульпы 0,5-1,0%. Раствор нитрата аммония, полученный после отделения осадка углекислого кальция, смешивают с раствором сульфата аммония, полученным после конверсии фосфогипса, смесь упаривают, гранулируют и сушат. Изобретение позволяет повысить эффективность комплексной переработки фосфогипса, производительность фильтрации на стадии осаждения высокочистого углекислого кальция, выход нитрата аммония в жидкую фазу. 1 з.п. ф-лы, 2 табл., 4 пр.

Изобретение может быть использовано в химической промышленности. Способ получения осажденного карбоната кальция (ОКК) включает следующие стадии: (i) предоставление источника кальция в виде CaO, который, возможно, является частично или полностью погашенным; (ii) предоставление газа, содержащего CO2; (iii) контактирование указанного источника кальция и указанного газа, содержащего СОз, в водной среде в реакторе; (iv) получение суспензии, содержащей ОКК; (v) возможно концентрирование указанной суспензии, содержащей ОКК; (vi) возможно добавление диспергирующих добавок к суспензии стадии (iv) и/или (v); (vii) возможно размалывание продукта стадий iv, v или vi. В течение стадии (iii) присутствует по меньшей мере один полимер. Изобретение позволяет повысить мощность производства ОКК путем сокращения времени карбонизации. 21 з.п. ф-лы, 2 ил., 1 табл.

Изобретение может быть использовано в химической промышленности. Способ переработки фосфогипса на сульфат аммония и фосфомел включает конверсию фосфогипса раствором карбоната аммония с последующим отделением осадка фосфомела от раствора сульфата аммония фильтрацией. Конверсию ведут раствором карбоната аммония с концентрацией 3-7%. Конверсионную пульпу делят на два потока, один из которых направляют на стадию разбавления карбоната аммония до указанной концентрации в течение 3-5 мин, во второй - на фильтрацию для отделения осадка фосфомела от раствора сульфата аммония. Изобретение позволяет увеличить выход сульфата аммония в жидкую фазу продукционной пульпы в среднем до 97,6%, повысить производительность фильтрации фосфомела, упростить аппаратурное оформление технологического процесса и снизить энергозатраты. 1 з.п. ф-лы, 3 табл., 4 пр.

Изобретение может быть использовано в производстве бытовых солнечных коллекторов. Текучая среда, используемая в качестве теплоносителя и применимая для преобразования светового излучения в тепло, содержит воду и порошковый минерал. Порошковый минерал обладает высокой способностью рассеивать солнечную радиацию и имеет массовую концентрацию от 1% до 3% и среднюю крупность частиц от 0,8 до 10 µ. Частицы порошкового минерала с высокой рассеивающей способностью имеют средний коэффициент рассеяния световой энергии более 0,7. В качестве порошкового минерала может быть взят карбонат кальция. Текучая среда может также содержать антифриз, поверхностно-активное вещество, антивспениватель и бактерицид. Изобретение позволяет улучшить поглощающую способность текучей среды. 3 н. и 12 з.п. ф-лы, 4 пр.

Cтраница 1


Растворение карбоната кальция нарушает равновесие и приводит к разложению других компонентов цемента. Аналогично действует угольная кислота на металлические трубы. Вначале в ней растворяются карбонаты, являющиеся составной частью ржаво-карбонатных отложений в водопроводной сети, затем материал труб подвергается электрохимической коррозии с образованием новых отложений.  

Растворение карбонатов кальция и стронция и отделение 8г2 - ио-нов. Помутнение раствора свидетельствует о присутствии в растворе 8г2 - ионов.  

Метод основан на растворении карбоната кальция в соляной кислоте и последующем титровании этого раствора щелочью.  

Метод основан на растворении карбоната кальция в соляной кислоте и последующем гравиметрическом определении нерастворимого остатка.  

Исследования показали, что растворение карбоната кальция и соответственно нейтрализация реакционной смеси формалина с хлористым аммонием происходит значительно медленнее и более равномерно по сравнению с раствором соляной кислоты.  

Агрессивность выщелачивания - происходит за счет растворений карбоната кальция и вымывания из бетоиа гидрата окиси кальция. В зависимости от содержания цемента и условий, в которых находится сооружение, вода обладает этой агрессивностью цри мшшмалъшш содержании НС03 от 0 4 до 1 5 мг-экв.  

Углекислотная - вызывает разрушение бетона в результате растворения карбоната кальция под действием агрессивной углекислоты.  

Нами были проведены опыты по изучению кинетики растворения карбоната кальция в растворах трилона Б при разных начальных значениях рН и разной температуре обработки.  

Объяснить, пользуясь правилом произведения растворимо сти, растворение карбоната кальция в воде, содержащей углекислый газ.  

На рис. 83 были приведены результаты опытов по растворению карбоната кальция раствором соляной кислоты, полученной при смешении хлористого аммония и формалина в соотношениях 18: 41, в зависимости от времени и температуры. Для сравнения приведены такие же графики растворения карбоната кальция в 15 % - ной соляной кислоте. Как видно из графиков, даже при комнатной температуре реакция известняка с чистой соляной кислотой проходит очень быстро. С повышением температуры реакция идет настолько быстро, что, начиная с 60 до 100 С, в течение 5 мин растворимость образца достигает более 80 % от теоретически возможной.  

Действие агрессивной угольной кислоты на бетон состоит в растворении карбоната кальция, образующегося при твердении цемента и переходе его в хорошо растворимый гидрокарбонат.  

Для условий задачи 7 - 15 примем, что растворение карбоната кальция происходило таким образом, что за каждый час растворялась половина всего количества, которое было до начала данного часа.  

Углекислотная агрессивность воды выражается в разрушении бетона в результате растворения карбоната кальция под действием угольной кислоты.  

Образование сталактитов и сталагмитов в пещерах известняковых гор объясняется растворением карбоната кальция в воде, содержащей двуокись углерода, и переосаждением его из водных растворов кислого карбоната кальция.  

Общекислотный вид агрессивности обусловлен низким значением рН, из-за чего усиливается растворение карбоната кальция. Источниками водород-иона здесь являются гумусовые кислоты, характерные для болотных вод, и гидролиз солей тяжелых металлов в зонах окисления сульфидов. Общекислотной агрессивностью обладают воды I гидрохимической зоны и воды болотных отложений, широко распространенные в пределах II зоны. Воды зандровых, аллювиальных, ледниковых и межледниковых (межморенных) отложений, характеризующиеся высокой рН 6 5 - 7 5, в подавляющем большинстве случаев этим видом агрессивности не обладают.  

Изобретение относится к химической технологии азотнокислотной переработки фосфатного сырья с получением карбоната кальция путем конверсии нитрата кальция в производстве NPK-удобрений. Способ получения карбоната кальция включает: взаимодействие нитрата кальция с раствором карбоната аммония, выделение осадка целевого продукта из суспензии, его промывку, термообработку при температурах 400… 700°С и измельчение. Изобретение позволяет упростить технологию переработки карбоната кальция - побочного продукта при получении NPK-удобрений в наполнитель для применения в различных отраслях промышленности. 1 з.п. ф-лы, 2 табл.

Способ относится к химической технологии азотнокислотной переработки фосфатного сырья с получением карбоната кальция путем конверсии нитрата кальция в производстве NPK-удобрений.

Изобретение может найти применение в производстве карбоната кальция, используемого в качестве наполнителя в полимерной, лакокрасочной и других отраслях промышленности.

Карбонат кальция является побочным продуктом при производстве NPK-удобрений типа нитроаммофоски, и его получение основано на взаимодействии (конверсии) раствора нитрата кальция с раствором карбоната аммония:

Ca(NO 3) 2 +(NH 4) 2 CO 3 → CaCO 3 ↓ +2NH 4 NO 3

Получаемый осадок карбоната кальция выделяют и промывают на фильтрах от маточного раствора и сушат. Готовый продукт представляет собой мелкодисперсный порошок, содержащий до 97% основного вещества (Комплексная азотнокислотная переработка фосфатного сырья / Гольдинов А.Л., Копылев Б.А. и др. - Л.: Химия, 1982. - 207 с.).

Одним из недостатков способа является неизбежное в производственных условиях загрязнение получаемого карбоната кальция водорастворимыми азотсодержащими соединениями маточного раствора (NH 4 NO 3 , Са(NO 3) 2 , (NH 4) 2 CO 3 , NH 3 и др.). Наличие водорастворимых примесей ограничивает применение продукта в качестве наполнителя в производстве пластмасс, лакокрасочных материалов, резинотехнических изделий и других материалов, так как в этом случае возможно их взаимодействие с органическими веществами, терморазложение при повышенных температурах, ухудшение эксплуатационных свойств наполненных продуктов. Кроме того, наличие гигроскопичных солей NH 4 NO 3 и Са(NO 3) 2 может привести к потере сыпучести карбоната кальция в процессах транспортировки и хранения, затруднить его дозирование и диспергирование.

Известен способ получения карбоната кальция с низким содержанием водорастворимых примесей (RU 2281921 С1, опубл. 20.08.2006). По этому способу карбонат кальция получают при 50-80°С и избытке раствора карбоната аммония 0,05-0,5% в пересчете на CO 2 своб., концентрацию раствора нитрата кальция поддерживают в пределах 10-13% разбавлением раствором аммиачной селитры. Выделенный фильтрованием осадок промывают и высушивают. Промывку ведут при соотношении Т:Ж - (1-3):1 в одну или две стадии с подачей фильтрата со второй стадии на первую, что позволяет снизить содержание аммонийных водорастворимых примесей в карбонате кальция до 0,03-0,2% в пересчете на нитрат аммония.

К недостаткам данного способа относятся увеличение нагрузки на оборудование за счет введения в процесс дополнительных количеств раствора аммиачной селитры и неполная отмывка водорастворимых примесей.

Неполная отмывка обусловлена тем, что при массовой кристаллизации при высоких значениях пересыщения быстрый рост частиц карбоната кальция протекает по полинуклеарному механизму с образованием частиц в виде поликристаллических сростков сферической формы. При этом неизбежно происходит объемная сорбция (окклюзионный захват) маточного раствора в межкристаллитном пространстве и внутренних порах растущих частиц карбоната кальция. В этом случае повышение эффективности промывки осадка карбоната кальция вытеснением или разбавлением не приведет к полному удалению захваченных водорастворимых примесей. Так как получаемый карбонат кальция по своему дисперсному составу не соответствует требованиям к наполнителям, то для его использования в данном направлении обязательной стадией является тонкое измельчение. При разрушении частиц соответственно будет происходить раскрытие межкристаллитных полостей и выход ранее окклюдированных примесей на образующуюся поверхность, что увеличит содержание водорастворимых соединений в измельченном продукте. В свою очередь организация дополнительной стадии отмывки уже измельченного продукта не может быть признана рациональным решением вопроса вследствие трудностей с фильтрацией и промывкой ультрадисперсных частиц, усложнением технологической схемы, необходимостью утилизации промывных вод и т.п. Аналогичные проблемы возникнут и при применении измельчения в водной среде.

Наиболее близким по своей сущности к предлагаемому способу является способ получения осажденного карбоната кальция из карбоната кальция, полученного в производстве NPK-удобрений (US 6790424 В2, опубл. 14.09.2004), путем проведения следующих последовательных стадий:

Получения карбоната кальция в производстве NPK-удобрений;

Термообработки влажного карбоната кальция в течение 30-90 минут при температурах 850-950°C с получением оксида кальция СаО;

Поглощения выделяющихся при обжиге водяных паров и газов (СО 2 , NH 3 , NOx) в скруббере;

Измельчения и охлаждения продукта обжига до 40-50°С;

Гашения водой с получением суспензии известкового молока концентрацией 15… 23% по твердой фазе;

Удаления из суспензии известкового молока тяжелых частиц седиментацией, или влажным рассевом через сито с размером ячеек 60-100 меш, или обоими способами;

Разбавления суспензии известкового молока до содержания твердых веществ в интервале 10… 20%;

Карбонизации известкового молока при 25… 45°С газовой смесью СО 2 -воздух с объемной долей СО 2 в интервале от 25 до 75% и скоростью пропускания через суспензию 10-15 см/сек;

Выделения фильтрацией или центрифугированием осадка карбоната кальция и его сушки.

Получаемый по данному способу осажденный карбонат кальция имеет чистоту более 97%, яркость более 96%, насыпную плотность 0,40-0,65 г/мл, средний размер частиц 5-20 мкм и может быть использован в производстве пластмасс, резины, красок и других продуктов.

Недостатками способа являются сложность и многостадийность процесса, необходимость использования для получения продукта дополнительных веществ - углекислого газа и воды.

Задачей, на решение которой направлено изобретение, является упрощение технологии переработки карбоната кальция - побочного продукта при получении NPK-удобрений в наполнитель для применения в различных отраслях промышленности.

Технический результат заключается в упрощении способа получения карбоната кальция, удовлетворяющего требованиям к дисперсным наполнителям для пластмасс, лаков, красок и других продуктов.

Технический результат достигается тем, что в предлагаемом способе, включающем взаимодействие раствора нитрата кальция с раствором карбоната аммония, выделение и промывку осадка целевого продукта, термообработку и измельчение, термообработку карбоната кальция ведут при температуре 400-700°С.

Отличием способа является проведение термообработки при температурах 400-700°С. При этом термообработке подвергают влажный карбонат кальция после промывки или предварительно высушенный до влажности менее 1%.

Пробу карбоната кальция, полученного в действующем производстве NPK-удобрений, с остаточной влажностью 11,5% после фильтрации и промывки подвергают термообработке при различных температурах в муфельной печи. Время обработки поддерживают постоянным на уровне 1 часа. Пробу после термообработки измельчают в течение 10 минут в лабораторной вибрационной мельнице до дисперсности, соответствующей 100%-ному проходу через сито с размером ячеек 45 мкм. Измельченный продукт анализируют на содержание водорастворимых азотсодержащих примесей, как их общего содержания с учетом связанных форм путем полного кислотного разложения пробы, так и в поверхностно-связанной форме с использованием водной экстракции. Измеряют также показатель pH водной суспензии. Для сравнения проводится аналогичный анализ измельченной пробы карбоната кальция без предварительной термообработки. Результаты представлены в таблице 1.

Опыты осуществляют согласно описанию примера 1, но в качестве исходной пробы берут карбонат кальция, предварительно высушенный до содержания влаги 1% (таблица 2).

Удаление водорастворимых азотсодержащих примесей как в доступной поверхностно-адсорбированной форме, так и в связанной окклюдированной форме термообработкой позволяет получать при измельчении карбоната кальция продукт, удовлетворяющий требованиям к наполнителям по содержанию водорастворимых примесей. По-видимому, снижение содержания водорастворимых примесей обусловлено термической неустойчивостью азотсодержащих соединений при высоких температурах. Известно (Технология минеральных солей. Ч.2 / Позин М.Е и др. - Химия, 1970. - 1558 с.), что заметное разложение нитрата аммония начинается при ~150°С, а интенсивно процесс протекает при нагреве выше 200°С. При 500°С и выше нитрат кальция полностью диссоциирует на СаО и NO 2 .

Нижний предел заявленного интервала температуры термообработки составляет 400°С, так как при данной температуре происходит заметное снижение содержания водорастворимых веществ в полученном продукте. Верхний предел заявленного интервала ограничивается температурой 700°С, так как при более высокой температуре, как видно из результатов, заметной становится диссоциация карбоната кальция, что видно по увеличению pH.

Полученный по предлагаемому способу карбонат кальция имеет следующие физико-химический свойства: средний размер частиц ~5 мкм, остаток на сите № 045 не более 0,1%, белизну ~95%, насыпную плотность 0,6-0,7 г/см 3 , содержание водорастворимых примесей менее 0,1% и может применяться в качестве дисперсного наполнителя при производстве пластмасс, лакокрасочных материалов и других продуктов.

Таким образом, при температуре термообработки в интервале 400… 700°С обеспечивается решение поставленной задачи, причем как для влажного карбоната кальция, так и предварительно высушенного. Ограничение верхнего предела влажности сухого карбоната кальция 1% связано с ухудшением его свойств при более высокой влажности, что проявляется в потере сыпучести и комковании продукта при хранении и транспортировке.

mob_info