Активная радиолокационная головка самонаведения аргс. Головка самонаведения Диапазон частот активных рлс в головках самонаведения

И др.) для обеспечения прямого попадания в объект атаки или сближение на расстояние, меньшее радиуса поражения боевой части средства поражения (СП), то есть для обеспечения высокой точности наведения на цель. ГСН является элементом системы самонаведения .

СП, оборудованное ГСН, может «видеть» «подсвеченную» носителем или ей самой, излучающую или контрастную цель и самостоятельно наводиться на неё, в отличие от ракет, наводимых командным способом.

Виды ГСН

  • РГС (РГСН) - радиолокационная ГСН:
    • АРГСН - активная РГС, имеет на борту полноценную РЛС , может самостоятельно обнаруживать цели и наводиться на них. Применяется в ракетах классов «воздух-воздух», «земля-воздух», противокорабельных;
    • ПАРГСН - полуактивная РГС, ловит сигнал РЛС сопровождения, отражённый от цели. Применяется в ракетах классов «воздух-воздух», «земля-воздух»;
    • Пассивная РГСН - наводится на излучение цели. Применяется в противорадиолокационных ракетах, а также в ракетах, наводящихся на источник активных помех.
  • ТГС (ИКГСН) - тепловая, инфракрасная ГСН. Применяется в ракетах классов «воздух-воздух», «земля-воздух», «воздух-земля».
  • ТВ-ГСН - телевизионная ГСН. Применяется в ракетах класса «воздух-земля», некоторых ракетах класса «земля-воздух».
  • Лазерная ГСН. Применяется в ракетах «воздух-земля», «земля-земля», авиабомбах.

Разработчики и производители ГСН

В Российской Федерации производство головок самонаведения различных классов сосредоточено на ряде предприятий военно-промышленного комплекса. В частности, активные головки самонаведения для ракет малой и средней дальности класса «воздух-воздух» серийно выпускаются во ФГУП «НПП „Исток“» (г. Фрязино Московской области).

Литература

  • Военный энциклопедический словарь / Пред. Гл. ред. комиссии: С. Ф. Ахромеев . - 2-е изд. - М .: Воениздат , 1986. - 863 с. - 150 000 экз. - ISBN , ББК 68я2, В63
  • Куркоткин В. И., Стерлигов В. Л. Самонаведение ракет. - М .: Воениздат , 1963. - 92 с. - (Ракетная техника). - 20 000 экз. - ISBN 6 Т5.2, К93

Ссылки

  • Полковник Р. Щербинин Головки самонаведения перспективных зарубежных управляемых ракет и авиабомб // Зарубежное военное обозрение . - 2009. - № 4. - С. 64-68. - ISSN 0134-921X .

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Головка самонаведения" в других словарях:

    Устройство на управляемых носителях боевых зарядов (ракетах, торпедах и др.) для обеспечения прямого попадания в объект атаки или сближения на расстояние, меньшее радиуса поражения зарядов. Головка самонаведения воспринимает энергию, излучаемую… … Морской словарь

    Автоматическое устройство, устанавливаемое в управляемых ракетах, торпедах, бомбах и др. для обеспечения высокой точности наведения на цели. По виду воспринимаемой энергии делятся на радиолокационные, оптические, акустические и др … Большой Энциклопедический словарь

    - (ГСН) автоматическое измерительное устройство, устанавливаемое на самонаводящихся ракетах и предназначенное для выделения цели на окружающем фоне и измерения параметров относительного движения ракеты и цели, используемых для формирования команд… … Энциклопедия техники

    Автоматическое устройство, устанавливаемое в управляемых ракетах, торпедах, бомбах и др. для обеспечения высокой точности наведения на цели. По виду воспринимаемой энергии делятся на радиолокационные, оптические, акустические и др. * * * ГОЛОВКА… … Энциклопедический словарь

    головка самонаведения - nusitaikymo galvutė statusas T sritis radioelektronika atitikmenys: angl. homing head; seeker vok. Zielsuchkopf, f rus. головка самонаведения, f pranc. tête autochercheuse, f; tête autodirectrice, f; tête d autoguidage, f … Radioelektronikos terminų žodynas

    головка самонаведения - nusitaikančioji galvutė statusas T sritis Gynyba apibrėžtis Automatinis prietaisas, įrengtas valdomojoje naikinimo priemonėje (raketoje, torpedoje, bomboje, sviedinyje ir pan.), jai tiksliai į objektus (taikinius) nutaikyti. Pagrindiniai… … Artilerijos terminų žodynas

    Устройство, находящееся на самоуправляемом снаряде (зенитной ракете, торпеде и др.), следящее за целью и вырабатывающее команды для автоматического наведения снаряда на цель. Г. с. может управлять полётом снаряда на всей его траектории… … Большая советская энциклопедия

    головка самонаведения Энциклопедия «Авиация»

    головка самонаведения - Структурная схема радиолокационной головки самонаведения. головка самонаведения (ГСН) — автоматическое измерительное устройство, устанавливаемое на самонаводящихся ракетах и предназначенное для выделения цели на окружающем фоне и измерения… … Энциклопедия «Авиация»

    Автоматич. устройство, устанавливаемое на носителе боевого заряда (ракете, торпеде, бомбе и др.) для обеспечения высокой точности наведения на цель. Г. с. воспринимает энергию, получаемую или отражаемую целью, определяет положение и характер… … Большой энциклопедический политехнический словарь

ЗАРУБЕЖНОЕ ВОЕННОЕ ОБОЗРЕНИЕ № 4/2009, стр. 64-68

Полковник Р. ЩЕРБИНИН

В настоящее время в ведущих странах мира ведутся НИОКР, направленные на совершенствование координаторов оптических, оптоэлектронных и радиолокационных головок самонаведения (ГСН) и устройств коррекции систем управления авиационных ракет, бомб и кассет, а также автономных боеприпасов различных классов и назначения.

Координатор - устройство для измерения положения ракеты относительно цели. Следящие координаторы с гироскопической или электронной стабилизацией (головками самонаведения) используются в общем случае для определения угловой скорости линии визирования системы «ракета - подвижная цель», а также угла между продольной осью ракеты и линией визирования и ряда других необходимых параметров. Фиксированные координаторы (без подвижных частей), как правило, входят в состав корреляционно-экстремальных систем наведения на неподвижные наземные цели или используются в качестве вспомогательных каналов комбинированных ГСН.

В ходе проводимых исследований осуществляется поиск прорывных технических и конструктивных решений, разработка новой элементной и технологической базы, совершенствование программного обеспечения, оптимизация массогабаритных характеристик и стоимостных показателей бортовой аппаратуры систем наведения.

При этом основными направлениями совершенствования следящих координаторов определены: создание тепловизионных ГСН, работающих в нескольких участках ИК-диапазона длин волн, в том числе с не требующими глубокого охлаждения оптическими приемниками; практическое применение активных лазерных локационных устройств; внедрение активно-пассивных радиолокационных ГСН с плоской или конформной антенной; создание многоканальных комбинированных ГСН.

В США и ряде других ведущих стран на протяжении последних 10 лет впервые в мировой практике широко внедряются тепловизионные координаторы систем наведения ВТО.

Подготовка к боевому вылету штурмовика А-10 (на переднем плане УРAGM-6SD «Мейверик»)

Американская УР класса «воздух - земля» AGM-158A (программа JASSM)

Перспективная УР класса «воздух - земля» AGM-169

В инфракрасных ГСН оптический приемник состоял из одного или нескольких чувствительных элементов, что не позволяло получать полноценную сигнатуру цели. Тепловизионные ГСН работают на качественно более высоком уровне. В них используются многоэлементные ОП, представляющие собой матрицу из чувствительных элементов, размещаемых в фокальной плоскости оптической системы. Для считывания информации с таких приемников применяется специальное оптико-электронное устройство, определяющее координаты соответствующей части проецируемого на ОП отображения цели по номеру подвергшегося экспозиции чувствительного элемента с последующими усилением, модуляцией получаемых входных сигналов и передачей их в вычислительный блок. Наибольшее распространение получили считывающие устройства с цифровой обработкой изображения и применением волоконной оптики.

Основными преимуществами тепловизионных ГСН являются значительное поле обзора в режиме сканирования, составляющее ± 90° (у инфракрасных ГСН с четырех - восьмиэлементными ОП не более + 75°) и увеличенная максимальная дальность захвата цели (5-7 и 10-15 км соответственно). Кроме того, возможна работа в нескольких участках ИК-диапазона, а также реализация режимов автоматических распознавания цели и выбора точки прицеливания, в том числе в сложных метеоусловиях и ночью. Использование матричного ОП снижает вероятность одновременного поражения всех чувствительных элементов активными системами противодействия.

Тепловизионный координатор цели «Дамаск»

Тепловизионные устройства с неохлаждаемыми приемниками:

А - фиксированный координатор для применения в корреляционных системах

коррекции; Б - следящий координатор; В - камера системы воздушной разведки

Радиолокационная ГСН с плоской фазированной антенной решеткой

Впервые полностью автоматической (не требующей корректирующих команд оператора) тепловизионной ГСН оснащены американские УР класса «воздух - земля» AGM-65D «Мейверик» средней и AGM-158A JASSM большой дальности. Тепловизионные координаторы цели применяются также в составе УАБ. Например, в УАБ GBU-15 используется полуавтоматическая тепловизионная система наведения.

В целях существенного снижения стоимости таких устройств в интересах их массового применения в составе серийно выпускаемых УАБ типа JDAM американскими специалистами был разработан тепловизионный координатор цели «Дамаск». Он предназначен для обнаружения, распознавания цели и коррекции конечного участка траектории УАБ. Данное устройство, выполненное без следящего привода, жестко фиксируется в носовой части бомб и использует штатный источник питания авиабомбы. Основными элементами ТКЦ являются оптическая система, неохлаждаемая матрица чувствительных элементов и электронно-вычислительный блок, обеспечивающие формирование и преобразование изображения.

Активизация координатора производится после сброса УАБ на дальности до цели около 2 км. Автоматический анализ поступающей информации осуществляется в течение 1-2 с со скоростью смены изображения района цели 30 кадр/с. Для распознавания цели применяются корреляционно-экстремальные алгоритмы сравнения получаемого в инфракрасном диапазоне изображения с переведенными в цифровой формат снимками заданных объектов. Они могут быть получены в ходе предварительной подготовки полетного задания с разведывательных спутников или летательных аппаратов, а также непосредственно с использованием бортовых устройств.

В первом случае данные целеуказания вводятся в УАБ во время предполетной подготовки, во втором - от самолетных РЛС или ИК-станции, информация от которых поступает на индикатор тактической обстановки в кабине экипажа. После обнаружения и идентификации цели производится коррекция данных ИСУ. Далее управление осуществляется в обычном режиме без использования координатора. При этом точность бомбометания (КВО) не хуже 3 м.

Аналогичные исследования с целью разработки относительно дешевых тепловизионных координаторов с неохлаждаемыми ОП проводятся рядом других ведущих фирм.

Такие ОП намечено использовать в ГСН, корреляционных системах коррекции и воздушной разведки. Чувствительные элементы матрицы ОП выполнены на основе интерметаллических (кадмия, ртути и теллура) и полупроводниковых (антимонид индия) соединений.

К перспективным оптоэлектронным системам самонаведения относится также активная лазерная ГСН, разрабатываемая фирмой «Локхид-Мартин» для оснащения перспективных УР и автономных боеприпасов.

Например, в составе ГСН экспериментального автономного авиационного боеприпаса LOCAAS применялась лазерная локационная станция, обеспечивающая обнаружение и распознавание целей путем трехмерной высокоточной съемки участков местности и находящихся на них объектов. Для получения трехмерного образа цели без ее сканирования применяется принцип интерферометрии отраженного сигнала. В конструкции ЛЛС используется генератор импульсов лазерного излучения (длина волны 1,54 мкм, частота повторения импульсов 10 Гц-2 кГц, длительность 10-20 не), а в качестве приемника - матрица чувствительных элементов с зарядовой связью. В отличие от прототипов ЛЛС, имевших растровую развертку сканирующего луча, у этой станции больший (до ± 20°) угол обзора, меньшая дисторсия изображения и значительная пиковая мощность излучения. Она сопрягается с аппаратурой автоматического распознавания целей по заложенным в намять бортовой ЭВМ сигнатурам до 50 тыс. типовых объектов.

Во время полета боеприпаса ЛЛС может осуществлять поиск цели в полосе земной поверхности шириной 750 м по курсу полета, а в режиме распознавания эта зона уменьшится до 100 м. При одновременном обнаружении нескольких целей алгоритм обработки изображений обеспечит возможность атаки наиболее приоритетной из них.

По мнению американских специалистов, оснащение ВВС США авиационными боеприпасами с активными лазерными системами, обеспечивающими автоматические обнаружение и распознавание целей с последующим их высокоточным поражением, станет качественно новым шагом в области автоматизации и будет способствовать повышению эффективности нанесения воздушных ударов в ходе ведения боевых действий на ТВД.

Радиолокационные ГСН современных УР применяются, как правило, в системах наведения авиационного оружия средней и большой дальности. Активные и полуактивные ГСН используются в УР класса «воздух - воздух» и противокорабельных ракетах, пассивные ГСН - в ПРР.

Перспективные УР, в том числе комбинированные (универсальные), предназначенные для поражения наземных и воздушных целей (класса «воздух - воздух - земля»), планируется оснащать радиолокационными ГСН с плоскими или конформными фазированными антенными решетками, выполненными с применением технологий визуализизации и цифровой обработки инверсной сигнатуры цели.

Считается, что основными преимуществами ГСН с плоскими и конформными антенными решетками по сравнению с современными координаторами являются: более эффективная адаптивная отстройка от естественных и организованных помех; электронное управление лучом диаграммы направленности с полным отказом от применения подвижных частей со значительным снижением массогабаритных характеристик и потребляемой мощности; более эффективное использование поляриметрического режима и доплеровского обужения луча; увеличение несущих частот (до 35 ГГц) и разрешающей способности, апертуры и поля обзора; снижение влияния свойств радиолокационной проводимости и теплопроводности обтекателя, вызывающих аберрацию и дисторсию сигнала. В таких ГСН возможно также применение режимов адаптивной настройки равносигнальной зоны с автоматической стабилизацией характеристик диаграммы направленности.

Кроме того, одним из направлений совершенствования следящих координаторов является создание многоканальных активно-пассивных ГСН, например тепло-визионно-радиолокационных или тепло-визионно-лазерно-радиолокационных. В их конструкции для уменьшения массогабаритных показателей и стоимости систему сопровождения цели (с гироскопической или электронной стабилизацией координатора) планируется использовать только в одном канале. В остальных ГСН будут применяться фиксированные излучатель и приемник энергии, а для изменения угла визирования намечено задействовать альтернативные технические решения, например, в тепловизионном канале - микромеханическое устройство точной юстировки линз, а в радиолокационном - электронное сканирование луча диаграммы направленности.


Опытные образцы комбинированных активно-пассивных ГСН:

слева - радиолокационно-тепловизионная гиростабилизированная ГСН для

перспективных ракет классов «воздух - земля» и «воздух - воздух»; справа -

активная радиолокационная ГСН с фазированной антенной решеткой и

пассивным тепловизионным каналом

Испытания в аэродинамической трубе разрабатываемой УР SMACM, (на рисунке справа ГСН ракеты)

Комбинированной ГСН с полуактивным лазерным, тепловизионным и активным радиолокационным каналами намечено оснастить перспективную УР JCM. Конструктивно оптоэлектронный блок приемников ГСН и радиолокационная антенна выполнены в единой следящей системе, что обеспечивает их раздельную или совместную работу в процессе наведения. В данной ГСН реализован принцип комбинированного самонаведении в зависимости от типа цели (тепло- или радиоконтрастная) и условий обстановки, в соответствии с которыми автоматически выбирается оптимальный метод наведения в одном из режимов работы ГСН, а остальные задействуются параллельно для формирования контрастного отображения цели при расчете точки прицеливания.

При создании аппаратуры наведения перспективных УР фирмы «Локхид-Мартин» и «Боинг» предполагают использовать имеющиеся технологические и технические решения, полученные в ходе работ по программам LOCAAS и JCM. В частности, в составе разрабатываемых УР SMACM и LCMCM предложено применять различные варианты модернизированной ГСН, установленной на УР AGM-169 класса «возух - земля». Поступление данных ракет на вооружение ожидается не ранее 2012 года.

Бортовая аппаратура системы наведения, комплектуемая этими ГСН, должна обеспечивать выполнение таких задач, как: патрулирование в назначенном районе в течение часа; разведка, обнаружение и поражение установленных целей. По мнению разработчиков, основными достоинствами подобных ГСН являются: повышенная помехозащищенность, обеспечение высокой вероятности попадания УР в цель, возможность применения в сложных помеховых и метеоусловиях, оптимизированные массогабаритные характеристики аппаратуры наведения, сравнительно невысокая стоимость.

Таким образом, осуществляемые в зарубежных странах НИОКР с целью создания высокоэффективных и одновременно недорогих авиационных средств поражения при существенном наращивании разведывательно-информационных возможностей бортовых комплексов как боевой, так и обеспечивающей авиации. позволят значительно повысить показатели боевого применения.

Для комментирования необходимо зарегистрироваться на сайте

Головка самонаведения

Головка самонаведения – автоматическое устройство, которое устанавливается на управляемое средство поражения для того, чтобы обеспечить высокую точность наведения на цель.

Главными частями головки самонаведения являются: координатор с приемником (а иногда и с излучателем энергии) и электронно-вычислительное устройство. Координатор осуществляет поиск, захват и сопровождение цели. Электронно-вычислительное устройство обрабатывает полученную от координатора информацию и передает сигналы, которые управляют координатором и движением управляемого средства поражения.

По принципу действия различают следующие головки самонаведения:

1) пассивные – принимающие излучаемую целью энергию;

2) полуактивные – реагирующие на отраженную целью энергию, которую излучает какой-нибудь внешний источник;

3) активные – принимающие отраженную от цели энергию, которую излучает сама головка самонаведения.

По виду принимаемых энергий головки самонаведения подразделяются на радиолокационные, оптические, акустические.

Акустическая головка самонаведения функционирует, используя слышимый звук и ультразвук. Наиболее эффективно ее применение в воде, где звуковые волны затухают медленнее, чем электромагнитные. Головки данного типа устанавливают на управляемых средствах поражения морских целей (например, акустических торпедах).

Оптическая головка самонаведения работает, используя электромагнитные волны оптического диапазона. Устанавливаются на управляемых средствах поражения наземных, воздушных и морских целей. Наводка осуществляется по источнику инфракрасного излучения либо по отраженной энергии лазерного луча. На управляемых средствах поражения наземных целей, относящихся к неконтрастным, применяют пассивные оптические головки самонаведения, которые функционируют по оптическому изображению местности.

Радиолокационные головки самонаведения работают с использованием электромагнитных волн радиодиапазона. Активные, полуактивные и пассивные радиолокационные головки используются на управляемых средствах поражения наземных, воздушных и морских целей-объектов. На управляемых средствах поражения неконтрастных наземных целей находят применение активные головки самонаведения, которые работают по отраженным от местности радиосигналам, или пассивные, которые функционируют по радиотепловому излучению местности.

Данный текст является ознакомительным фрагментом. Из книги Руководство слесаря по замкам автора Филипс Билл

Из книги Руководство слесаря по замкам автора Филипс Билл

автора Коллектив авторов

Делительная головка Делительная головка – устройство, применяемое для установки, закрепления и периодического поворота или непрерывного вращения небольших заготовок, обрабатываемых на фрезерных станках. В инструментальных цехах машиностроительных предприятий

Из книги Большая энциклопедия техники автора Коллектив авторов

Револьверная головка Револьверная головка – специальное устройство, в котором устанавливаются различные режущие инструменты: сверла, зенкеры, развертки, метчики и др. Револьверная головка является важным составным элементом токарно-револьверных станков (автоматов и

Из книги Большая энциклопедия техники автора Коллектив авторов

Головка самонаведения Головка самонаведения – автоматическое устройство, которое устанавливается на управляемое средство поражения для того, чтобы обеспечить высокую точность наведения на цель.Главными частями головки самонаведения являются: координатор с

Из книги Большая Советская Энциклопедия (ДЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ВИ) автора БСЭ

Из книги Большая Советская Энциклопедия (ГО) автора БСЭ

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

Из книги Большая Советская Энциклопедия (РА) автора БСЭ

Из книги Большая книга рыболова-любителя [с цветной вкладкой] автора Горяйнов Алексей Георгиевич

Грузило-головка Сегодня это приспособление чаще именуют джиг-головкой. Напоминает большую мормышку с крепежным колечком и стопором для приманки. Служат спиннинговые грузила-головки в основном для горизонтальной проводки мягких приманок и могут различаться по массе и

Самонаведением называется автоматическое наведение ракеты на цель, основанное на использовании энергии, идущей от цели к ракете.

Головка самонаведения ракеты автономно осуществляет сопровождение цели, определяет параметр рассогласования и формирует команды управления ракетой.

По виду энергии, которую излучает или отражает цель, системы самонаведения разделяются на радиолокационные и оптические (инфракрасные или тепловые, световые, лазерные и др.).

В зависимости от места расположения первичного источника энергии системы самонаведения могут быть пассивными, активными и полуактивными.

При пассивном самонаведении энергия, излучаемая или отражаемая целью, создается источниками самой цели или естественным облучателем цели (Солнцем, Луной). Следовательно, информация о координатах и параметрах движения цели может быть получена без специального облучения цели энергией какого-либо вида.

Система активного самонаведения характеризуется тем, что источник энергии, облучающий цель, устанавливается на ракете и для самонаведения ЗУР используется отраженная от цели энергия этого источника.

При полуактивном самонаведении цель облучается первичным источником энергии, расположенным вне цели и ракеты (ЗРК «Хок»).

Радиолокационные системы самонаведения получили широкое распространение в ЗРК из-за их практической независимости действия от метеорологических условий и возможности наведения ракеты на цель любого типа и на различные дальности. Они могут использоваться на всем или только на конечном участке траектории зенитной управляемой ракеты, т. е. в сочетании с другими системами управления (системой телеуправления, программного управления).

В радиолокационных системах применение пассивного способа самонаведения весьма ограничено. Такой способ возможен лишь в частных случаях, например при самонаведении ЗУР на самолет, имеющий на своем борту непрерывно работающий радиопередатчик помех. Поэтому в радиолокационных системах самонаведения применяют специальное облучение («подсвечивание») цели. При самонаведении ракеты на всем участке ее траектории полета к цели, как правило, по энергетическим и стоимостным соотношениям применяются полуактивные системы самонаведения. Первичный источник энергии (радиолокатор подсвета цели) обычно располагается на пункте наведения. В комбинированных системах применяются как полуактивная, так и активная системы самонаведения. Ограничение по дальности активной системы самонаведения происходит за счет максимальной мощности, которую можно получить на ракете с учетом возможных габаритов и массы бортовой аппаратуры, в том числе и антенны головки самонаведения.

Если самонаведение начинается не с момента старта ракеты, то с увеличением дальности стрельбы ракетой энергетические преимущества активного самонаведения по сравнению с полуактивным возрастают.

Для вычисления параметра рассогласования и выработки команд управления следящие системы головки самонаведения должны непрерывно отслеживать цель. При этом формирование команды управления возможно при сопровождении цели только по угловым координатам. Однако такое сопровождение не обеспечивает селекцию цели по дальности и скорости, а также защиту приемника головки самонаведения от побочной информации и помех.

Для автоматического сопровождения цели по угловым координатам используются равносигнальные методы пеленгации. Угол прихода отраженной от цели волны определяется сравнением сигналов, принятых по двум или более несовпадающим диаграммам направленности. Сравнение может осуществляться одновременно или последовательно.

Наибольшее распространение получили пеленгаторы с мгновенным равносигнальным направлением, в которых используется суммарно-разностный способ определения угла отклонения цели. Появление таких пеленгационных устройств обусловлено в первую очередь необходимостью повышения точности систем автоматического сопровождения цели по направлению. Такие пеленгаторы теоретически не чувствительны к амплитудным флюктуациям отраженного от цели сигнала.

В пеленгаторах с равносигнальным направлением, создаваемым путем периодического изменения диаграммы направленности антенны, и, в частности, со сканирующим лучом, случайное изменение амплитуд отраженного от цели сигнала воспринимается как случайное изменение углового положения цели.

Принцип селекции цели по дальности и скорости зависит от характера излучения, которое может быть импульсным или непрерывным.

При импульсном излучении селекция цели осуществляется, как правило, по дальности с помощью стробирующих импульсов, открывающих приемник головки самонаведения в момент прихода сигналов от цели.


При непрерывном излучении сравнительно просто осуществить селекцию цели по скорости. Для сопровождения цели по скорости используется эффект Доплера. Величина доплеровского смещения частоты сигнала, отраженного от цели, пропорциональна при активном самонаведении относительной скорости сближения ракеты с целью, а при полуактивном самонаведении - радиальной составляющей скорости цели относительно наземного радиолокатора облучения и относительной скорости сближения ракеты с целью. Для выделения доплеровского смещения при полуактивном самонаведении на ракете после захвата цели необходимо произвести сравнение сигналов, принятых радиолокатором облучения и головкой самонаведения. Настроенные фильтры приемника головки самонаведения пропускают в канал изменения угла только те сигналы, которые отразились от цели, движущейся с определенной скоростью относительно ракеты.

Применительно к зенитному ракетному комплексу типа «Хок» она включает радиолокатор облучения (подсвета) цели, полуактивную головку самонаведения, зенитную управляемую ракету и др.

Задачей радиолокатора облучения (подсвета) цели является непрерывное облучение цели электромагнитной энергией. В радиолокационной станции используется направленное излучение электромагнитной энергии, что требует непрерывного сопровождения цели по угловым координатам. Для решения других задач обеспечивается также сопровождение цели по дальности и скорости. Таким образом, наземная часть системы полуактивного самонаведения представляет собой радиолокационную станцию с непрерывным автоматическим сопровождением цели.

Полуактивная головка самонаведения устанавливается на ракете и включает координатор и счетно-решающий прибор. Она обеспечивает захват и сопровождение цели по угловым координатам, дальности или скорости (или по всем четырем координатам), определение параметра рассогласования и выработку команд управления.

На борту зенитной управляемой ракеты устанавливается автопилот, решающий те же задачи, что и в командных системах телеуправления.

В состав зенитного ракетного комплекса, использующего систему самонаведения или комбинированную систему управления, входят также оборудование и аппаратура, обеспечивающие подготовку и пуск ракет, наведение радиолокатора облучения на цель и т. п.

Инфракрасные (тепловые) системы самонаведения зенитных ракет используют диапазон волн, как правило, от 1 до 5 мкм. В этом диапазоне находится максимум теплового излучения большинства воздушных целей. Возможность применения пассивного способа самонаведения - основное преимущество инфракрасных систем. Система делается более простой, а ее действие - скрытым от противника. До пуска ЗУР воздушному противнику труднее обнаружить такую систему, а после пуска ракеты создать ей активную помеху. Приемник инфракрасной системы конструктивно может быть выполнен намного проще приемника радиолокационной ГСН.

Недостаток системы - зависимость дальности действия от метеорологических условий. Тепловые лучи сильно затухают при дожде, в тумане, в облаках. Дальность действия такой системы также зависит от ориентации цели относительно приемника энергии (от направления приема). Лучистый поток из сопла реактивного двигателя самолета значительно превышает лучистый поток его фюзеляжа.

Тепловые головки самонаведения получили широкое распространение в зенитных ракетах ближнего боя и малой дальности.

Световые системы самонаведения основаны на том, что большинство воздушных целей отражает солнечный или лунный свет значительно сильнее, чем окружающий их фон. Это позволяет выделить цель на данном фоне и навести на нее зенитную ракету с помощью ГСН, осуществляющей прием сигнала в диапазоне видимой части спектра электромагнитных волн.

Достоинства данной системы определяются возможностью применения пассивного способа самонаведения. Ее существенный недостаток - сильная зависимость дальности действия от метеорологических условий. При хороших метеорологических условиях световое самонаведение невозможно также в направлениях, где в поле зрения угломера системы попадает свет Солнца и Луны.

mob_info