Обзор новых идей в производстве энергии. Инновации в энергетике

Возобновляемые источники энергии (ВИЭ) с каждым годом становятся все более заметными в мировой энергетике. В США и странах Евросоюза доля ВИЭ в общем объеме производства в 2010 году составила 11% и 9,6%, соответственно. И по прогнозам к 2020 году она вплотную приблизится к 25%. При этом количество энергии, вырабатываемой ВИО, возрастет в странах Евросоюза в 3,8 раза, а в США - в 22,5 раза.

Развитие возобновляемых источников энергии в России находится на ранних этапах. В 2010 году доля возобновляемой энергетики в общем объеме производства составила 0,9% с установленной мощностью в 2,1 ГВт. К 2020 году доля ВИЭ возрастет до 4,5% с установленной мощностью в 25 ГВт.

Несмотря на серьезные проблемы, ограничивающие рост использования ВИЭ в России, существуют существенные предпосылки для их активного развития.

Использование возобновляемых источников энергии играет важную роль в развитии распределенной энергетики .

Распределенная энергетика является приоритетной сферой экономически эффективного практического использования ВИЭ в России. В этой сфере установки на ВИЭ уже сегодня могут успешно конкурировать с традиционными энергоустановками.

Потенциальные масштабы возможного эффективного использования ВИЭ в сфере распределенной генерации уже сегодня измеряются гигаватами. Наряду с законодательной и финансовой поддержкой развития ВИЭ в централизованной энергетике, государственная политика должна учитывать и стимулировать развитие ВИЭ в регионах в сфере распределенной энергетики.

Ключевые предпосылки развития распределенной энергетики с использованием ВИЭ:

  • 2/3 территории страны расположены вне сетей централизованного энергоснабжения: население около 20 млн чел., районы с наиболее высокими ценами и тарифами на топливо и энергию (более 25 руб./
  • кВтч);
  • Более 50% регионов страны энергодефицитны: завоз топлива, импорт электроэнергии – задача повышения региональной энергетической безопасности;
  • Газифицировано около 50% населенных пунктов, а в сельской местности - менее 35%.

Рассмотрим различные технологии возобновляемой энергетики.

Среди основных проблем солнечной энергетики можно выделить непостоянность и непредсказуемость основного источника энергии, зависимость от погодных и климатических условий, и обусловленная этим необходимость в накопителях энергии или дополнительных источниках энергии. Существенными недостатками являются высокая стоимость фотоэлектрических систем (ФЭС) с учетом необходимости в накопителях и обратных преобразователях переменного тока (до 50% от общей стоимости системы), сравнительно низкий КПД (от 4-5% до 20% для традиционных фотоэлектрических модулей (ФЭМ), и до 40% для концентрирующих ФЭМ) и низкая энергоемкость (~8-12 м2/кВт), вследствие чего под ФЭС требуются большие территории (Таблица 1).

Наиболее перспективными из перечисленных выше технологий являются:

  • Усовершенствованные неорганические тонкопленочные ФЭМ - Сферические ФЭМ на основе селенида меди-индия (CIS) и тонкопленочные поликристаллические кремниевые ФЭМ;
  • Органические ФЭМ (в том числе фотосенсибилизированные красителем ФЭМ на основе органических полимеров);
  • Термо-фотоэлектрические (TPV) ячейки с узкой запрещенной зоной (low gap-band).

Основные исследования в области развития фотоэлектрических технологий направлены на снижение себестоимости фотоэлектрических модулей за счет:

  • Повышения КПД фотоэлектрических модулей I-го и II-го поколения:
  • Снижения потребления материалов – использования пленочных ФЭМ;
  • Повышения энергоемкости – уменьшения поверхности ФЭМ;
  • Использования органических материалов взамен дефицитного сырья (такого как серебро, индий, теллур, свинец и кадмий);
  • Снижения стоимости и сроков окупаемости ФЭМ (Рисунок 1);
  • Использования более тонких и эффективных фотоэлектрических пластин;
  • Использования поликремневых заменителей (например, металлургического кремния).

Ветроэнергетика

Ветроэнергетика является одним из наиболее популярных и быстро развивающихся направлений альтернативной энергетики. Тем не менее, её распространение так же ограничивается непостоянностью ветра, как источника энергии, нарушением эстетического пейзажа ввиду установки огромных 100-метровых ветровых мельниц и сложностями с подключением к существующим сетям ввиду отдаленности наиболее благоприятных территорий для установки ветрогенераторов от существующей инфраструктуры. Стоимость ветряной турбины составляет около 80% от общей стоимости ветрогенератора, и поэтому основные усилия по снижению себестоимости ветряной энергии направлены на снижение расходов на производство турбин.

Среди основных направлений развития технологий в ветроэнергетике выделяются следующие:

Увеличение генерирующего потенциала:

  • Увеличение размеров турбин (см. рис.);
  • Увеличение высоты турбинных башен;
  • Использование оффшорных ветров и ветров на больших высотах;

Улучшение материалов:

  • Снижение зависимости башенных конструкций от стальных элементов;
  • Снижение веса пропеллеров (использование углеродных волокон и высокоинтенсивного углепластика);

Улучшение системы привода (редуктор, генератор, электроника) :

  • Развитие технологии сверхпроводников для более легких и эффективных электрогенераторов;
  • Использование постоянных электромагнитов в электрогенераторах.

Среди новых перспективных разработок выделяются:

Летающие ветряные турбины:

Makani Airborne Wind Turbine - на 90% легче традиционных турбин, запускается с использованием электрического двигателя, способна генерировать электричество на низких скоростях ветра;

Altaeros Airborne Wind Turbine - использует наполненную гелием оболочку для подъема на большие высоты;

Magenn Air Rotor System (M.A.R.S.) - MARS улавливает энергию ветра на высоте от 200 до 300 метров, а также струйные потоки воздуха, возникающие практически на любой высоте;

Генерация на ветрах низких скоростей

Wind Harvester - новая модель ветрогенератора основывается на возвратно-поступательном движении с использованием горизонтальных аэродинамических поверхностей;

Ветряная линза

Ветряная линза (Япония, университет Кюсю) - направленное внутрь изогнутое кольцо, располагающееся по периметру окружности, описываемой лопастями турбины при вращении. Увеличивает мощность ветряной турбины втрое при одновременном уменьшении уровня шума, имеет наибольший потенциал использования в открытом море;

Ветряные турбины с вертикальной осью

Windspire - вертикальная турбина высотой около 10 метров и шириной

около полутора метров, применима к использованию в городских

условиях (Рисунок 4).

Наиболее перспективными технологиями в ветроэнергетике станут те, что

позволят снизить зависимость их эффективности от размеров турбин,

как, например, Wind Harvester или Windspire .


Makani Airborne Wind Turbine


Altaeros Airborne Wind Turbine

Биоэнергетика

Несмотря на высокое распространение производства тепловой и электрической энергии из биомасс, технология выработки энергии из них имеет ряд проблем:

  • Необходимость земельных и водных ресурсов для выращивания, конкурирует с производством пищевых продуктов;
  • Вредные выбросы при сжигании (NOx, сажа, зола, CO, CO2);
  • Сезонный характер роста некоторых культур;
  • Проблемы масштабирования генерирующих мощностей.

Наиболее перспективные направления развития технологий в биоэнергетике:

  • Совместное сжигание смесей биомассы с традиционными видами топлива (наиболее дешевая технология на данный момент - Рисунок 6);
  • Использование новых видов топлива из биомасс, включая различные бытовые и промышленные отходы;
  • Переоборудование существующих генерирующих мощностей на углеводородном топливе под использование биомасс;
  • Повышение теплоотдачи пеллет биомассы за счет сушки;
  • Интегрированная газификация биомасс с топливными ячейками.


В приливной и волновойэнергетике используетсякинетическая энергия воды.Основное отличие состоитв том, что в приливнойэнергетике используетсяэнергия морских приливови отливов за счет перепадав уровне воды, тогда как вволновой энергетикеиспользуются водныетечения и колебания волн.

Основные барьеры на пути распространения данного вида альтернативной энергетики

  • Высокие капитальные затраты на строительство (от 2,5 до 7 млн. евро за 1 МВт установленной мощности);
  • Географическая привязка к береговой линии и удаленность от существующих электрических сетей;
  • Негативное влияние на окружающую среду;
  • Зависимость от природных явлений;
  • Дороговизна и сложность техобслуживания;
  • Быстрый износ генерирующего оборудования под воздействием воды.

Среди общих направлений технологических исследований в области приливной энергетики выделяются следующие:

Усовершенствование приливных плотин:

  • Повышение эффективности генераторов на приливных плотинах;
  • Улучшение антикоррозийных свойств материалов;

Использование приливного течения:

  • Генерация электроэнергии непосредственно от течения воды во время
  • приливов (а не от перепада в уровне воды между приливами и
  • отливами);
  • Исследования в области различных видов турбин (горизонтальных и
  • вертикальных) для преобразования энергии приливного течения;
  • Исследований новых, не турбинных технологий;

Модернизация фиксаторов преобразователей приливного течения:

Якорная стоянка на гравитационном фундаменте или забивных сваях, плавающие платформы, закрепленные с помощью причальных линий.

Наиболее перспективные новые технологии и разработки в области приливной энергетики:

  • Использование мостов в качестве приливных электростанций, например, проект компании Bluenergy (см.рис.);
  • Колеблющееся подводное крыло (применяет вместо вращающихся элементов плавники (крылья), которые приводятся в движение течением);
  • Системы с использованием трубки Вентури (например, Rotech Tidal Turbine – двусторонняя турбина с горизонтальной осью, расположенная внутри симметричной конической трубки Вентури, преобразует энергию океанического течения в электроэнергию);
  • Магнитогидродинамические системы (MHD) (Концептуальная технология, использующая криогенно охлажденную сверхпроводящую электромагнитную катушку, размещенную на морском дне, где проходящие приливные волны используются для выработки энергии).

В волновой энергетике большинство исследуемых технологий все еще находится на стадии разработки или экспериментальных испытаний:

  • Усовершенствование технологий осциллирующих водяных колонн (OWC) (например, снижение колебаний вырабатываемой электроэнергии за счет применения маховиков и силовой электроники);
  • Развитие технологии уровневых уловителей (point absorber) на плавучих буях (в т.ч. применение различных способов отбора мощности (механических, гидравлических, электромагнитных));
  • Усовершенствование технологий переливных турбинных генераторов типа WaveDragon (Повышение КПД и снижение колебаний вырабатываемой электроэнергии).

Среди новых и уже испытуемых технологий можно выделить следующие наиболее перспективные проекты:

  • Волновые аттенюаторы (например, Pelamis Wave Energy – преобразователь волновой энергии в виде змеевидных устройств, наполовину погруженных в воду - см. рис.)
  • Волновые генераторы на принципе обратного маятника (Inverted Pendulum, например, bioWAVE™, в котором ряд поплавков или лопастей взаимодействует с колеблющейся морской поверхностью (потенциальной энергией) и подводными течениями (кинетической энергией), конвертируя энергию волн в электричество специальным конвертирующим модулем);
  • Генераторы с жидким/газообразным рабочим телом (включая SDE Wave Power, использующий гидродинамическую энергию волн для приведения в движение пистонов в гидравлическом моторе или Archimedes Wave Swing-III ряд устройств из множества уловителей волновых колебаний на гибкой мембране, конвертирующих энергию волн в пневматическую энергию посредством сжатия воздуха в каждом устройств).


Человечество ищет ответы на глобальные вопросы:

– что делать в связи с изменением климата и глобальным потеплением;

– где найти энергоресурсы, которые распределены крайне неравномерно и истощаются;

– как обеспечить энергетическую безопасность каждой страны и глобальную безопасность.

Ответы на эти глобальные вопросы могут быть получены в результате реализации новой энергетической стратегии. Основные направления будущего развития энергетики:

1. Переход от энергетики, основанной на ископаемом топливе, к бестопливной энергетике с использованием возобновляемых источников энергии.

2. Переход на распределённое производство энергии, совмещённое с локальными потребителями энергии.

3. Создание глобальной солнечной энергетической системы.

4. Замена нефтепродуктов и природного газа на жидкое и газообразное биотопливо, а ископаемого твёрдого топлива - на использование энергетических плантаций биомассы.

5. Замена автомобильных двигателей внутреннего сгорания на бесконтактный высокочастотный резонансный электрический транспорт.

6. Замена воздушных линий электропередач на подземные и подводные кабельные линии.

По всем указанным направлениям в ВИЭСХе проведены исследования, разработаны технологии и экспериментальные образцы, защищённые российскими патентами.

Солнечная энергетика – это самая быстрорастущая отрасль энергетики в мире с темпами роста 53% в год и объёмом производства в 2009 г. 12ГВт.

Солнечные электростанции (СЭС) с концентраторами в Калифорнии мощностью 354МВт работают с 1980 г. и замещают ежегодно 2млн. баррелей нефти (1 баррель – 159л).

Роль солнечной энергии в энергетике будущего определяется возможностями промышленного использования новых физических принципов, технологий, материалов и конструкций солнечных элементов, модулей и электростанций, разработанных в России.

Для того чтобы конкурировать с топливной энергетикой, солнечной энергетике необходимо выйти на следующие критерии:

КПД солнечных электростанций должен быть не менее 25%.

Срок службы солнечной электростанции должен составлять 50 лет.

Стоимость установленного киловатта пиковой мощности солнечной электростанции не должна превышать 2000долл.

Объём производства солнечных электростанций должен быть 100ГВт в год.

Производство полупроводникового материала для СЭС должно превышать 1 млн. т в год при цене не более 25долл./кг.

Круглосуточное производство электрической энергии солнечной энергосистемой.

Материалы и технологии производства солнечных элементов и модулей должны быть экологически чистыми и безопасными.

Рассмотрим, в какой степени цели и направления развития мировой солнечной энергетики отвечают вышеуказанным критериям.

В ГНУ ВИЭСХ разработана новая технология, материалы и технологическое оборудование для сборки солнечных фотоэлектрических модулей с увеличением срока службы солнечных электростанций в два раза с 20-25 лет до 40-50 лет. Новая технология повышает КПД за счёт снижения рабочей температуры модуля и позволяет создавать фотоприёмники концентрированного излучения с большим сроком службы.

Солнечный модуль изготовлен с применением нового типа заполнителя – модифицированного полисилоксанового геля, обеспечивающего улучшенные оптические параметры, расширенный диапазон эксплуатационных температур и удвоение срока службы модуля. Температурный диапазон эксплуатации: от -60 до +60оС. Предполагаемый срок эксплуатации модуля – более 40 лет.

Годовая экономия электроэнергии на производстве модулей мощностью 1МВт не менее 70560кВт/час. Увеличение объёма производства электроэнергии при эксплуатации СЭС за счёт увеличения срока службы с 20 до 40 лет составит 20 миллионов кВт-ч для СЭС 1МВт и 200 миллиардов кВт-ч на мировой объём выпуска 10 ГВт.

Разработка отмечена дипломом Президиума РАСХН как лучшая работа в Академии за 2009 год. Получены патенты РФ, аналогов в мире нет.

Разработана новая технология и конструкция, и организовано экспериментальное производство солнечных фотоэлектрических кремниевых модулей (СФКМ) с КПД до 24% для солнечных электростанций с концентраторами, которая позволяет снизить затраты кремния на единицу мощности СЭС по сравнению с существующей технологией в 500 – 1000 раз.

Состояние разработки: выпущена партия 100 СФКМ и проведены исследования СФКМ с концентраторами. Получен патент РФ и диплом Федеральной службы по патентам РФ о включении этой разработки в 100 лучших изобретений РФ (отбор из 42 000 патентов). Аналогов в мире нет.

Исследована система солнечного теплоснабжения зданий с помощью встроенных в стены солнечных коллекторов с вакуумными стеклопакетами (СКВС). Совместно с НПО «Плазма» разработана технология изготовления вакуумных стеклопакетов и организовано их экспериментальное производство.

Сопротивление теплопередачи СКВС толщиной 7мм с вакуумным зазором 100 мкм равно 1,2м2-°С/Вт, что соответствует сопротивлению теплопередаче кирпичной стены толщиной 0,65 м. Срок службы вакуумного стеклопакета 40 лет.

Облицовка фасадов зданий солнечными коллекторами с вакуумными стеклопакетами позволяет в средней полосе РФ в течение 8 месяцев, а в Южном федеральном округе круглогодично обеспечить солнечное теплоснабжение зданий.

Разработана компьютерная программа и проведены расчёты тепловой энергии, полученной от СКВС на фасаде здания в отопительный период.

Использование 7мм вакуумного стеклопакета в окнах зданий снижает потери на кондиционирование на 25-30%. На технологию и конструкцию вакуумного стеклопакета и его применение получено 15 патентов РФ. Аналогов за рубежом нет, за исключением Японии.

Современные системы передачи электрической энергии используют двух- и трёхпроводные линии, в которых электрическая энергия передаётся от генератора к приёмнику бегущими волнами тока, напряжения и электромагнитного поля. Основные потери обусловлены джоулевыми потерями на сопротивлении проводов, от протекания активного тока проводимости по замкнутому контуру от генератора к приёмнику и обратно.

Крупные энергетические компании во многих странах мира вкладывают гигантские средства и научные ресурсы в создание технологии высокотемпературной сверхпроводимости для снижения джоулевых потерь в линии.

Существует другой, вероятно, более эффективный способ снижения потерь, по крайней мере, в магистральных и межконтинентальных линиях электропередач: разработать регулируемые резонансные волноводные системы передачи электрической энергии на повышенной частоте 1-100кГц, которые не используют активный ток проводимости в замкнутой цепи. В волноводной однопроводниковой линии нет замкнутого контура, нет бегущих волн тока и напряжения, а есть стоячие (стационарные) волны реактивного ёмкостного тока и напряжения со сдвигом фаз 90°. За счёт настройки резонансных режимов, выбора частоты тока в зависимости от длины линии, можно создать в линии режим пучности напряжения и узла тока (например, для полуволновой линии). При этом, из-за отсутствия активного тока, сдвига фаз между стоячими волнами реактивного тока и напряжения 90° и наличия узла тока в линии, отпадает необходимость и потребность в создании в такой линии режима высокотемпературной проводимости, а джоулевые потери становятся незначительными, в связи с отсутствием замкнутых активных токов проводимости в линии и незначительными величинами незамкнутого ёмкостного тока вблизи узлов стационарных волн тока в линии.

Изменяется и механизм передачи электрической энергии. В обычных двух-трёхпроводных линиях при включении генератора в линии возникают бегущие волны тока, которые должны достигнуть нагрузки и вернуться к генератору. В резонансной однопроводниковой волноводной линии при наличии стационарных волн незамкнутого электрического тока электрическая энергия присутствует в любой точке линии.

Новая физика электрических процессов, связанная с использованием не активного, а реактивного тока, позволит решить три главные проблемы современной электроэнергетики:

– создание сверхдальних линий передач с низкими потерями без использования технологии сверхпроводимости;

– увеличение пропускной способности линий;

– замена воздушных линий на кабельные однопроводниковые волноводные линии и снижение сечения токонесущей жилы кабеля в 20-50 раз.

В экспериментальной резонансной однопроводниковой системе передачи электрической энергии, установленной в экспериментальном зале ВИЭСХ, мы передавали электрическую мощность 20кВт при напряжении 6,8кВ на расстоянии 6м по медному проводнику диаметром 80мкм при комнатной температуре, при этом эффективная плотность тока в проводнике составила 600А/мм2, а эффективная плотность мощности – 4МВт/мм2. Из других применений резонансной электроэнергетики, основанной на незамкнутых токах, следует выделить беспроводной офис, бесконтактный высокочастотный электротранспорт, создание местных энергетических систем с использованием возобновляемых источников энергии, соединение оффшорных морских ВЭС с береговыми подстанциями, электроснабжение потребителей на островах и в зонах вечной мерзлоты, пожаробезопасные однопроводниковые системы уличного освещения и освещения зданий, домов престарелых, музеев, больниц и пожароопасных производств.

Подготовлены предложения по разработке энергоэффективного гибридного трактора с беспроводной системой зарядки аккумуляторов, электрической мощностью 50-100кВт, экономией дизельного топлива 30% и снижением уровня выбросов в 5 раз.

Планируется изготовление и испытание опытного образца и организация серийного производства.

Будет выполнена разработка электрического автомобиля с беспроводной системой зарядки аккумуляторов, электрическая мощность которой 50-100кВт. Грузоподъёмность 1,5т. 100% экономия топлива. Отсутствие вредных выбросов. Увеличение эффективности использования первичной энергии в 2 раза:

– отсутствие двигателя внутреннего сгорания и топливных баков;

– отсутствие химических аккумуляторов;

– отсутствие топливных элементов, системы накопления и хранения водорода;

– неограниченная дальность пробега;

– возможность полной автоматизации вождения на автострадах.

Используется бесконтактная резонансная система электроснабжения с однопроводниковой линией электропередачи, работающей на повышенной частоте.

Планируется изготовление опытной партии, проведение испытаний и организация серийного производства.

Для сомневающихся в существовании незамкнутых электрических токов приводим высказывания двух выдающихся учёных в области электротехники и электро-энергетики.

«Исключительная трудность согласования законов электромагнетизма с существованием незамкнутых электрических токов – одна из причин среди многих, почему мы должны допустить существование токов, создаваемых изменением смещения» (Д. Максвелл).

«В 1893 г. я показал, что нет необходимости использовать два проводника для передачи электрической энергии... Передача энергии через одиночный проводник без возврата была обоснована практически» (Н.Тесла, 1927 г.).

«Эффективность передачи может быть 96 или 97 процентов, и практически нет потерь...

Когда нет приёмника, нет нигде потребления энергии» (Н. Тесла, 1917 г.).

«Мои эксперименты показали, что на поддержание электрических колебаний по всей планете потребуются несколько лошадиных сил» (Н. Тесла, 1905 г.).


Н. Тесла ответил и на вопрос, который часто задают нам: почему электроэнергетика не восприняла его идеи? «Мой проект сдерживался законами природы. Мир не был готов к нему. Он слишком обогнал время. Но те же самые законы восторжествуют в конце и осуществят его с великим триумфом» (Н. Тесла, 1919 г).

За 20 лет исследований российские учёные получили более 20 патентов на технологии и оборудование резонансной электроэнергетики, результаты исследований опубликованы в книге «Резонансные методы передачи и применения электрической энергии» (3-е изд., 2008 г., ГНУ ВИЭСХ, 350 стр.).

Резонансная электроэнергетика нуждается в поддержке государства для реализации пилотных и демонстрационных проектов и ждёт нового Моргана, банкира, который 100 лет назад финансировал работы Н. Тесла.

Особенно большое значение для сельского хозяйства имеет технология переработки биомассы, растительных и древесных отходов, навоза, торфа в жидкое топливо и газ посредством термохимической переработки и метаногенеза.

Энергетические установки, использующие биомассу, отходы могут дать столько же энергии, сколько все атомные станции в России, и они имеют почти нулевые выбросы диоксида углерода и серы, то есть являются экологически чистыми. Получение и использование этого топлива, а также смесевого и модифицированного топлива позволит пополнить энергобаланс сельских предприятий и регионов и в значительной мере снизить зависимость от централизованных закупок ископаемого топлива и электроэнергии.

Осуществляется разработка технологии и создание оборудования высокоскоростной термохимической переработки древесных опилок, угля, торфа и сельскохозяйственных отходов с целью получения пиролизного газа, электроэнергии и теплоты.

Производительность по сырью 1т/сутки. Выход пиролизного газа более 50% от массы сырья обеспечивает работу газопоршневой машины с электрогенератором электрической мощностью 100кВт и тепловой мощностью 100кВт.

Завершается разработка технологии и оборудования для получения смесевого композиционного дизельного топлива. Изготовлены и проведены испытания двух типов оборудования: производительностью 1-3т/ч и 0,2т/ч. Экономия дизельного топлива 30%.

Удельная теплота сгорания 10300ккал/кг, цетановое число – 51, температура застывания -36оС. Годовой экономический эффект при объёме потребления 6 млн. т – 30 млрд. руб. Снижение вредных выбросов в 2 раза. В планах изготовление опытной партии, испытания топлива на МИС, организация производства оборудования 100 комплектов в год.

Инновационная и инвестиционная деятельность является важнейшей составляющей научно-технического прогресса. Она открывает возможности практического воплощения новых идей и реализации их в инвестиционных проектах. На пути реализации инноваций и инвестиций – психологические, экономические, технологические, законодательные, информационные барьеры.

Неучтённые риски, недоверие, боязнь неудачи, ошибки в ряде случаев не позволяют последовательно довести идею до реального воплощения.

Экономические барьеры связаны, как правило, с нехваткой средств на воплощение идеи или более высокой стоимостью предлагаемой технологии или техники по сравнению с существующей на сегодняшний день, из-за недооценки ряда показателей (например, экономических преимуществ, качества, надёжности или перспектив снижения стоимости).

Технологические барьеры могут быть преодолены при разработке и освоении новых, менее затратных и более эффективных технологий, что будет способствовать снижению и экономических барьеров.

Законодательные барьеры связаны с отсутствием законодательных и нормативных актов, стимулирующих инновационную и инвестиционную деятельность. Например, в энергетике России нет нормативных актов и экономических регуляторов, обеспечивающих поставку и продажу электроэнергии в общую энергосистему малыми и независимыми производителями.

В процессе выбора и реализации инновационных предложений важнейшим является полнота и доступность информации, включающей технико-экономическое обоснование и бизнес-планы. Для преодоления информационного барьера следует сопровождать все инновационные предложения бизнес-планами с анализом рисков при их реализации для последующего издания, широкого распространения в Интернет и на конференциях.

Необходима государственная поддержка в создании благоприятных условий для реализации инвестиционных и инновационных проектов и их использования в производстве.

При реализации инновационных пилотных проектов важным является определение тех регионов, где условия реализации конкретных инноваций более благо-приятны.

Например, при реализации автономных энергосистем на базе возобновляемых источников энергии следует выбрать регионы с благоприятными солнечными, ветровыми или другими ресурсами, а также регионы, где тарифы на традиционное энергообеспечение – повышенные.

Для стимулирования и поддержки НИОКР и последующей инновационной деятельности следовало бы в пределах выделяемого финансирования разрешить государственным научным учреждениям оплачивать расходы на подачу и поддержание патентов РФ, участие сотрудников в выставках и конференциях, подключение и использование Интернет, приобретение компьютерной техники, научных приборов, программного обеспечения, изготовление макетных и экспериментальных образцов, реализацию демонстрационных проектов.

В ближайшие десятилетия мир будет потреблять гораздо больше энергии, чем сегодня. В конце концов, везде, где возрастает потребность к надежной и доступной энергии, люди смогут наслаждаться более высоким уровнем жизни.

Это хорошо в некотором смысле!

Но в то же время в мире есть огромное население, которое даже не имеет доступа к большинству основных энергетических услуг. Не только это, но и изменение климата также остается серьезной проблемой.

Эта проблема породила потребность в разработке некоторых инноваций, которые могут помочь как сосуществовать так, и удовлетворить растущую потребность людей, вносить вклад в контроль климата.

Энергетические инновации

Энергия является первичной и используется повсеместно - школы и коммерческие районы продолжают работать, городские огни продолжают светить, транспортные средства продолжают двигаться.

В условиях острой необходимости для мира главное преобразовать свою энергетическую систему. Направить вектор развития на разработку и внедрение технологий с низким или нулевым уровнем выбросов углерода.

Развитые страны, такие как Соединенные Штаты и Европа, уже готовы изменить исходные модели потребления, чтобы направить свои силы на добычу чистой энергии, но развивающиеся страны не смогут позволить себе заплатить требуемую премию за этот способ.

Причина проста - современные технологии экологически чистой энергии, такие как ветер, солнечная энергия, электромобили, интеллектуальные сети и накопители энергии, стоят дороже. Таким образом, должен быть какой-то выход, чтобы эти возобновляемые источники энергии были доступны миру таким образом, чтобы их растущие потребности были удовлетворены, но без прожигания дыры в их карманах.

Для этого наметились различные тенденции, которые могут позволить странам принять решения в области устойчивой энергетики таким образом, что они даже окажутся энергосберегающими.

Основные тенденции энергетических инноваций в 2019 году

Инновации во всем, включая хранение энергии, интеллектуальные энергосистемы и технологии производства электроэнергии, затронут каждый сектор.

Хранение энергии будет способствовать жизнеспособности энергии ветра и солнца - двух источников энергии, которые слишком дороги из-за затрат, связанных с батареями, которые хранят генерируемую энергию.

Наличие умных сетей будет регулировать поток энергии по всему городу или району.

Развитие производства электроэнергии повысит эффективность при оптимальном использовании ископаемого топлива и других возобновляемых источников энергии.

Ниже перечислены тенденции, которые мы можем ожидать не только для экономии энергии, но и для удовлетворения растущих энергетических потребностей мира.

1. Инновационные хранилища энергии

Вы можете очень хорошо сбалансировать энергоснабжение и спрос, если у вас достаточно запасенного количества энергии. Фактически, это является ключом к решению неустойчивых проблем возобновляемой энергии.

Как насчет сопряжения системы хранения энергии с возобновляемым источником? Это может обеспечить вам плавное и устойчивое энергоснабжение даже в условиях, когда погода не благоприятствует выработке энергии.

Как говорилось ранее, батареи являются хорошим вариантом для накопления энергии, но, тем не менее, из-за их дорогостоящего характера можно ожидать улучшения в других технологиях накопления энергии, которые могут сделать их не только жизнеспособными, но и доступными сразу.

Ожидается, что новые появляющиеся технологии будут иметь накопление энергии в качестве основного компонента. Вследствие этого все типы решений для хранения, включая бытовую энергию и коммунальные услуги, также станут конкурентоспособными по цене, что в конечном итоге превзойдет преимущества традиционных источников энергии.

Это значительное новшество в области накопления энергии уже началось на карибском острове Барбадос. Здесь старые аккумуляторы для электромобилей используются повторно, чтобы обеспечить накопление энергии сетки с целью продления их обычного срока службы.

2. Сила искусственного интеллекта в микросетях

Лучшая часть микросетей состоит в том, что они являются локальными энергосетями, которые могут работать в обоих направлениях - свободно или даже оставаясь подключенными к большей обычной сети. Эти сети не только экономят энергию, но также обеспечивают энергетическую независимость, эффективность и защиту в случае непредвиденных обстоятельств.

Ну, вы, наверное, слышали об искусственном интеллекте, то есть искусственном интеллекте - одном из популярных технологических нововведений современности. Используя возможности машинного обучения искусственного интеллекта с помощью микросетевых контроллеров, вы можете способствовать улучшению работы, одновременно испытывая постоянную адаптацию.

Эта техника распространяется повсюду. Наряду с WorleyParsons Group техническая компания из Сан-Диего (США) под названием XENDEE разработала расширенный инструментарий для проектирования микросетей. Этот инструментарий нацелен на обслуживание готовых решений на 90% меньше времени и затрат по сравнению с другими традиционными методами.

3. Блокчейн и IoT могут работать в пользу энергетических систем

Блокчейн не ограничивается только криптовалютой в наше время. Он используется в различных отраслях промышленности и энергетический рынок ничем не отличается. Если вы не имеете большого представления о том, что такое блокчейн - на простом языке, то это распределенный регистр, в котором записываются все транзакции через одноранговую сеть.

Лучшая часть использования технологии блокчейн заключается в том, что она нетленная.

Таким образом, использование таких технологий в энергосистеме может устранить потребность в посредниках для поставщиков электроэнергии. Это, в свою очередь, не только решит проблемы неэффективного и неравномерного распределения энергии, но и даст вам, конечному потребителю, возможность напрямую торговать энергией.

Сопряжение этой распределенной книги с обычными устройствами, которые используются для получения и передачи информации - сегодня известный как Интернет вещей (IoT), может оказать существенное влияние на энергетические системы.

Brooklyn Microgrid уже начала использовать эти технологии, и считается, что правильные приложения приведут к успеху, и эта технология начнет внедряться в более широком масштабе.

4. Соотношение сетки с уменьшением затрат

Если альтернативная энергия имеет потенциал для выработки электроэнергии с затратами и уровнем производительности, равными или меньшими, чем у традиционных методов, происходит четность энергосистемы. Это ситуация с солнцем и ветром в настоящее время.

Они достигли паритета как в цене, так и в производительности. Прежде всего, поддержка новых технологий буквально дает им конкурентное преимущество над другими источниками энергии.

Проще говоря, возобновляемые источники энергии становятся эффективными и самооптимизируемыми в основном благодаря инновационным технологиям, таким как блокчейн и AI. Раньше было невозможно интегрировать энергию в сеть, но сейчас это не то же самое.

Эти технологии вносят значительный вклад в укрепление надежности и гибкости энергосистемы.

Солнечная и ветровая энергия, безусловно, эффективны и рентабельны, и с этими развивающимися технологиями, поэтому мы можем ожидать, что возобновляемые источники энергии будут наиболее предпочтительными из всех.

5. Переход на возобновляемые источники энергии из ископаемого топлива

С целью ограничения роста глобальной температуры все большее число стран придумывают цели сокращения выбросов наряду с планами действий по изменению климата.

По мере того, как мир узнает об их влиянии на изменение климата, можно ожидать перехода от ископаемого топлива к возобновляемым источникам энергии в ближайшем будущем.

6. Продвижение доступа к энергии в развивающихся странах

Говоря о новых инновациях и технологиях, также важно помнить, что значительная часть населения мира вообще не может получить доступ к энергии. Нашей целью должен быть не только поиск инновационных путей потребления энергии, но и рассмотрение глобальных проблем в области развития, которые включают обеспечение доступности энергии в каждом уголке мира, где есть признаки человеческого существования.

Для этого мы можем создать микросетки на уровне сообществ, поскольку они могут обеспечить экономически эффективный способ доставки недорогой и надежной электроэнергии в тот район мира, где нет электричества. В конце концов, и развивающиеся страны также имеют право ощутить преимущества технического прогресса.

Таким образом, обеспечение их чистыми, модульными и возобновляемыми энергетическими системами должно быть на переднем плане наших разработок.

7. Улучшенное управление энергией

Это факт, что спрос на энергию никогда не будет уменьшаться, на самом деле, он определенно будет расти с повышением уровня жизни. Таким образом, глядя на эту ситуацию, было бы мудро, чтобы лидеры отрасли, производители и традиционные лидеры управления энергопотреблением собрались вместе, чтобы установить некоторые новые стандарты, которые могут помочь в улучшенном управлении энергопотреблением.

Международные группы, такие как Всемирный банк и SEforALL, разрабатывают новые технологии энергосбережения, которые в дальнейшем станут основой для обеспечения доступа к развивающимся странам. Как только показатели стоимости и производительности начнут улучшаться, можно ожидать, что возобновляемые источники будут все более широко использоваться во всем мире.

Список литературы:

  1. Волкова И. О., Гительман Л. Д., Кожевников М. В. Инновации в электроэнергетике: учебное пособие. М.: Издательство "Экономика", 2015.
  2. Гончаренко А.А., Грасмик К.И. Инновации в энергетике и кооперация с вузами: М.: Издательство «Вестник Омского университета», 2012.
  3. Рогозина В.В., Иванова Н.Г. Тенденции инновационного развития электроэнергетики России: М.: Издательство «Успехи в химии и химической технологии», 2017.

Проблему получения энергии решали за счёт наращивания мощностей, действующих технических средств. Уровень технологий не позволял эффективно использовать энергетические запасы. Наблюдались потери, К.П.Д. использования даров природы был очень низким. Ещё в прошлом веке возникла острая необходимость внедрения высокоэффективных методов использования нефти, угля, воды, обеспечивающая внедрение инноваций.

Запасы природных ископаемых планеты ограничены. Они кончаются. Получать энергию из оставшейся части, станет сложнее. Поэтому вместе с улучшением технологий, обеспечивающих старые способы энергетик, идёт постоянный поиск альтернативных способов решения проблемы, внедрения качественных инноваций.

Мировые инновации 2018

Достижения в области энергетик наблюдаются в разных странах, помогая развитию техники, бизнеса. Они решают конкретные задачи, входящие в следующие направления инноваций мира:

  • Создание высокопроизводительных, безопасных производств выпуска конкретных объёмов энергии.
  • Анализ и расчет разумных (минимальных) инноваций.
  • Развитие других способов передачи энергии на расстояния с минимальными потерями.
  • Создание экологической безопасности для живых организмов.
  • Внедрение единой энергосистемы с умной цифровой технологией управления.

В ближайшее время полного отказа от углеводородных энергетик не планируется, но поиск альтернативных источников, их внедрение в жизнь идёт полным ходом.

Внимание. По прогнозам специалистов новые технологии уже в 2020 году повысят степень нетрадиционных методов в энергетике до 15 %.

Объём мировых инноваций формируется за счёт государственных вложений. Частные компании тоже финансируют современные разработки. Корпорация Google предложила проект получения энергии за счет оригинальной конструкции змея-аэроплана. Мощность одного устройства составляет 600 кВт. Оно позволяет удовлетворить потребности стандартного многоквартирного дома. Или предложения специалистов Японской компании по использованию новейших способов беспроводной передачи энергии. Даже фантастические идеи реализуются, принесут прибыль, когда будут освоены капитальные инновации.

Направление

Ведутся разработки в многочисленных направлениях оптимальных энергетических инноваций. Денежные вложения, оговариваемые многочисленными программами стран, предлагается направлять на улучшение технологических процессов старых способов добычи энергии и внедрением в жизнь новых достижений науки. Главными направлениями считаются следующие предложения:

  1. Использование нефти. Цена на нефть является главной движущей силой развития промышленности. Постоянно идёт поиск новых технологий, обеспечивающих повышение процента добычи нефти из старых и новых скважин. Важно отметить , что благодаря инновациям внедрён новый принцип третичной обработки нефтеносных пластов, делающий скважины рентабельными. Должное внимание уделяется вопросам экологии.
  2. Гидроэлектростанции. Природные условия определяют решение использования старинных способов энергетик. Для возведения гидроэлектростанций, реконструкции старых объектов применяются современные материалы, неожиданные конструктивные решения. Используя осмос эффект, предлагается возводить их в открытом море с солёной водой.
  3. Устройства угольной промышленности. Старинный вид топлива добывается с помощью современных лазерных комбайнов. Рядом с шахтами формируются экологически безопасные, используемые в хозяйстве зоны.
  4. Создание устройств на использовании излучении солнца. Внедрение современных технологий приручения солнечной радиации полезно для районов с достаточным количеством солнечных дней в году. Всё чаще можно встретить частные владения, тепличные комплексы, оборудованные собственными устройствами накопления запасов солнечной радиации.
  5. Использование силы ветра. Энергетика, созданная на основе силы ветра, стала привычным видом формирования запасов мощности в разных странах. Новейшие разработки постоянно внедряются при создании новых типов двигателей, систем накопления, передачи.
  6. Создание осмостанций. В их основе лежит пополнение запасов энергетики за счёт разницы давлений солёной и пресной воды (осмос эффект). Вращающиеся турбины вырабатывают электричество. Проведённые финансовые расчёты показали, что затраты по сравнению с возведением гидроэлектростанций уменьшаются.

Инициатор

Потребности энергетик ежегодно увеличиваются. Каждая страна проводит тщательный анализ необходимой мощности, зная основные направления в развитии промышленности, научных планах, бытовом использовании. Инициаторами инноваций энергетик являются специалисты конкретной страны, предлагающие обоснованные программы. В странах Европы, Азии активно вкладываются деньги в альтернативные виды получения энергии ветра, солнца. Это Германия, Швеция, Италия, Испания. С появлением современного оборудования возросло количество солнечных станций на территории Америки. Уменьшилась их стоимость. Половину рынка объёмов солнечной мощности используют в Китае, Японии. Продолжает расти использование геотермальных источников в Ирландии, Исландии. Инновации в разработку новых видов тепловых насосов инициировали внедрение геотермальной силы на территориях России, Белоруссии, Украины. По инициативе Министерства энергетики России разработана специальная дорожная карта «Энерджтнет», формирующая рынок электроэнергии будущего. Усилиями специалистов Интер РАО ЕЭС создан фонд «Энергия без границ», предусматривающий модернизацию старых методов энергетик, внедрение альтернативных, более эффективных, экологически безопасных способов.

Краткое описание

Энергетические проблемы повседневной жизни общества требуют разработок и эффективного внедрения альтернативных способов пополнения энергетических запасов. Природные запасы (нефть, газ, уголь) постепенно уменьшаются, становится важным первенство в освоении новых возможностей. Сейчас это следующие инновации в энергетике:

  • Использование ударной силы волны (фрекинг). Технология фрекинга называют перспективным будущим нефтегазовой индустрии, открывающей безграничные перспективы для сланцевой революции добычи энергии земли. Вместо традиционного применения, искусственно созданных потоков воды, для разрыва пласта на глубинах до 1500 м используется ударная волна. Главным разработчиком технологии назначена компания Super Wave Technology, расположенная в Индии.
  • Замена бензина биотопливом. Чаще всего в качестве биотоплива используется этанол, биодизель. Их стоимость определяется текущим значением цены на нефть. Поиск новых видов биотоплива проводится в разработках НИОКР разных стран. В Техасском университете создан новый вид дрожжей, позволяющий выпускать дешёвый вид биотоплива, как источника энергии, получаемого из живых организмов (растений, животных). Их не менее важным достоинством является способность уничтожать вредоносные загрязнения нефтью, химическими соединениями. Сейчас учёные изучают свойства бактерии Oleispira antartica для использования её в условиях низких температур Заполярья.
  • Дальнейшее развитие атомных энергетик, использование физических свойств водорода, мечты о новых видах энергии, полученных на других планетах.

Бюджет

Планирование объёмов денежных вложений в развитие энергетики стало обязательным в экономике любой страны. В первую очередь это определяется выбранным направлением инноваций, оценкой необходимых денежных сумм. В США планируется увеличить средства на развитие крупнейшего солнечного проекта в штате Вирджиния. Два объекта (Pleinmont I и II), входящие в состав солнечной станции мощностью 500 МВт, будут оснащены самыми современными солнечными панелями, устройствами хранения силовых запасов энергетик. Прибыль от продажи такой энергии быстро окупит все затраты. В ближайшем будущем США увеличит долю энергии из возобновляемых источников с 13 % до 18%.

По уровню планируемых на развитие инноваций лидируют Китай, Индия, Англия, Италия, Германия.

Интересно. Оценка МВФ на 2018 год государственных субсидий для инноваций в энергетику даёт величину свыше 10 млн. долларов в минуту.

В России отсутствует системный подход поддержки проекта «Энергоэффективность». Общие денежные вложения государства упали почти во много раз (с 7,1 млрд. руб. до 140 млн. руб. на 2016 год). Но при этом наблюдается рост заводов-производителей газового оборудования, приборов обработки воды, КИПиА. Одним из поставщиков подобного оборудования является компания ООО «РОСС» ross.com.ru/difmanometr-dsp-4sg-m1 (г. Белгород Тел. 4722 40-00-70). Компания предоставляет гарантию качества и полный комплект документов предоставляемых заводами-изготовителями.

Особенности развития энергетики в России

Наличие разнообразных климатических условий на большой территории России требует особенного отношения к анализу возможных способов производства энергии. Только на отопление жилища ежегодно надо потратить миллиарды, не говоря о проблемах промышленности, сельского хозяйства, содержании армейского оборудования. Российская энергетика находит решение в развитии старых способов и использование любых современных инноваций в области применения технологий, основанных на новых физических принципах получения энергии. Организуются специальные фонды инноваций, открываются НИОКР по созданию новых материалов, необходимых при модернизации плотин, нефтяных вышек, техники для добычи угля. Это сверхстойкие нано структурированные стали, много композиционные защитные покрытия, оригинальные солнечные панели, новейшие системы ветряков, современные тепловые насосы. Разработке подлежат все направления инноваций в технологии получения энергии, повышения эффективности её использования при передаче на большие расстояния, свойственные России. Уникальной разработкой России (в мире отсутствуют аналоги) называют метод петротермальной энергетики (тепловая сила сухих горных пород в земной коре). Разработки ведутся по программе «Термолитэнерго».

В ближайшее время основным направлением получения энергии в России останется нефть. От её цены, объёмов добычи с помощью новейших технологий будет зависеть уровень развития техники, жизни.

Взял в первую очередь для себя.

Новейшие технологии и перспективные направления

На сегодняшний день известны следующие разновидности инновационной энергетики (мы приводим их краткое описание):


  • Установки для нагрева жидкости — вихревые теплогенераторы (существуют и другие названия этих установок). Жидкость прокачивается электронасосом через конструкцию определенным образом соединённых труб и нагревается до 90 градусов. Эти теплогенераторы давно используются для отопления помещений, но общепризнанной теории процессов, приводящих к нагреву жидкости, пока нет. Есть конструкции, в которых в качестве рабочего тела пытаются использовать воздух.

  • «Холодный ядерный синтез». Попытки извлечь ядерную энергию без применения сверхвысоких температур предпринимаются с конца 1980-х годов. Недавно итальянскими инженерами было заявлено, что им такая попытка удалась, правда от наименования холодный ядерный синтез они отказываются. Но суть в том, что в их катализаторе энергии тепло получают в результате слияния ядер химических элементов. Установка готова для практического использования.

  • Магнитомеханический усилитель мощности. По уверению авторов этого изобретения им удаётся использовать магнитное поле Земли для увеличения скорости вращения вала генератора или электромотора. Тем самым увеличивается количество электроэнергии, получаемой от генератора или уменьшается потребление энергии электромотором из сети. Такие устройства находятся на стадии полупромышленных образцов.

  • Индукционные нагреватели. Индукционный нагрев с помощью электричества используется в промышленности давно, но этот процесс удалось усовершенствовать. Теперь индукционный электрокотёл даёт больше тепловой энергии при тех же затратах электроэнергии. Предлагаемый электрокотёл, благодаря усовершенствованию, по эксплуатационным затратам будет на уровне газовых котлов.

  • Двигатели без выброса массы. Лабораторные образцы таких двигателей, не потребляющих топлива, демонстрируются в одном из космических исследовательских институтов (НИИ космических систем). Был проведен эксперимент с таким двигателем на спутнике. Перспективы этого направления пока не ясны.

  • Плазменные генераторы электроэнергии. Эксперименты с различными конструкциями ведутся давно в основном на лабораторном уровне.

  • Напряженные замкнутые контуры. По утверждению энтузиастов этого подхода существуют такие кинематические схемы, реализация которых позволяет извлечь дополнительную энергию. Демонстрировались возможности таких схем в конструкциях мельниц для измельчения отходов полимерных материалов. Затраты энергии на измельчение в этих мельницах меньше, чем в мельницах традиционных конструкций.

  • Энергоустановки на основе динамической сверхпроводимости. Разработчики этих потенциальных генераторов электроэнергии утверждают, что при определённой скорости вращения дисков возникает эффект динамической сверхпроводимости тока, что позволяет генерировать мощные магнитные поля. А уже эти поля можно использовать для генерации электроэнергии. В ходе экспериментов накоплен большой массив информации по необычным физическим эффектам. Есть возможность не только генерировать энергию, но и создать двигатель для транспортных средств. Это направление выглядит одним из самых перспективных в новой энергетике.

  • Атмосферная электроэнергетика , объединяет различные способы и проекты получения накапливаемой в атмосфере электрической энергии. Наиболее очевидный путь состоит в захвате колоссальной энергии молний. Данное направление новой энергетики обладает немалым потенциалом.

Приведенный перечень исследований, направлений и готовых установок не является исчерпывающим. Однако он позволяет сделать вывод, что общество может приступить к осуществлению крупных проектов в инновационной энергетике, чтобы создать и развить принципиально новые технологии генерирования энергии. Благодаря этому будет создано важное условие выхода из тупика, как энергетической отрасли, так и всей экономики.

Крайне сомнительно, что нынешние руководство РАН и правительство России способны разработать целевую комплексную программу НИОКР в области новейших методов получения дешевой энергии на базе научных идей тех ученых и изобретателей, которые не могут до сих пор прорвать блокаду консервативной среды. Российские власти прямо заинтересованы в сохранении энергетического status quo на планете. Борьба начальства РАН с лженаукой обернулась забраковкой актуальных научных работ. Был зарублен «холодный синтез» ; не видно развития других направлений энергетики в рамках официальной науки. Однако остановить прогресс в энергетической сфере невозможно. Его блокировка в России может лишь осложнить судьбу господствующих сырьевых монополий.

7. Радикальные инновации

Современные исследования позволяют выделить несколько изобретений и сфер, способных сыграть важную роль в энергетической революции. Возможно, благодаря таким новшествам привычный мир навсегда уйдет в прошлое.

7.1. Нанопроводниковый аккумулятор

В 2007 году Стэндфордский университет представил новое изобретение. Им оказался нанопроводниковый аккумулятор, вид литий-ионного аккумулятора. Суть изобретения в замене традиционного графитового анода аккумулятора на анод из нержавеющей стали покрытый кремниевым нанопроводником. Благодаря способности кремния удерживать в 10 раз больше лития, чем графит стало возможно создавать значительно большую плотность энергии на аноде. Масса аккумулятора при этом снизилась. Предполагается, что со временем увеличение площади поверхности анода сделает процесс зарядки и разрядки более быстрым. До конца 2012 года ожидается начало коммерческого использования нового аккумулятора.

Появление в продаже более объемных и «быстрых» батарей способно не только облегчить жизнь владельцев переносных компьютеров и мобильных телефонов. Оно может означать начало реального вытеснения двигателя внутреннего сгорания в автодорожном транспорте электромобилями с большим запасом энергии и мощностью. Снижение стоимости производства аккумуляторов нового поколения, а также увеличение срока их жизни (как минимум до нескольких тысяч циклов) расширит поле применения автономных электронных устройств.

7.2. Беспроводная передача электричества

Необходимо различать беспроводную передачу электрических сигналов и электрической энергии. В первом деле человечество добилось уже больших успехов, во втором оно, как может показаться, делает первые шаги. В 2010 году Haier Group удивила мир первым в мире LCD телевизором. В основе разработки лежали исследования по беспроводной передаче энергии и на беспроводном домашнем цифровом интерфейсе (WHDI).

Однако еще в 1893 году Никола Тесла продемонстрировал беспроводное освещение люминесцентными лампами как проект для Колумбовской всемирной выставки в Чикаго. В 1897 году ученый зарегистрировал первый план беспроводной передачи электричества. Но способ, разработанный Тесла, не нашел широкого практического применения, что было, прежде всего, связано с достаточностью для экономического развития уже имеющихся базовых изобретений в электроэнергетике. Консервативную роль сыграли энергетические компании, не проявившие заинтересованности в беспроводной передаче электричества не только в рамках помещения, но и на расстоянии в тысячи километров. Столь же холодно они воспринимали попытки Тесла предложить новые — революционные способы генерации, взамен ранее выдвинутым им же методам. В 1917 году была разрушена принадлежавшая ему Башня Ворденклифа, построенная для проведения опытов по беспроводной передаче больших мощностей.

Начавшие распространяться в наши дни беспроводные зарядные устройства для всевозможных гаджетов демонстрируют возрождение интереса к беспроводной передаче электроэнергии. Перспективы этого направления колоссальны. Не случайно в 2008 году корпорация Intel попыталась воспроизвести опыты Тесла 1894 года, а также группы Джона Брауна 1988 года по беспроводной передаче энергии для свечения ламп накаливания с 75% КПД. Задачи и успехи современной беспроводной передачи выглядят скромно по сравнению с размахом работ Тесла столетней давности. Однако именно в наши дни кризис новой когда-то электроэнергетики делает работы в направление беспроводной передачи электричества чрезвычайно актуальными и ценными.

7.3. Атмосферная электроэнергетика

В 2010 году бразильский ученый Фернандо Галембекк сделал сенсационное заявление о возможностях получения атмосферного электричества. Согласно разработкам его группы из университета Кампинаш в Сан-Паулу мельчайшие заряды могут собираться из влажного воздуха. Как показали испытания, для сбора зарядов могут применяться определенные металлы, что в перспективе открывает крупные возможности для производства электроэнергии в регионах с влажным климатом. Считается, что совершенствование этой технологии даст человечеству еще один источник возобновляемой энергии.

Разработки бразильских ученых — не единственные попытки получить доступ к электричеству, заключенному в воздушном слое планеты. Существуют проекты летающих станций, занимающихся «ловлей» молний, а также наземных установок того же назначения. В России опытами в данной области занимаются сразу несколько групп, не имея никакой государственной поддержки. Бразильские исследователи стремятся разработать устройство для получения — «вытягивания» — электроэнергии из движущегося влажного воздуха. С этой целью проводятся эксперименты с материалами, что должно помочь выделить наиболее эффективные (более эффективные, чем кварц и фосфат алюминия) для содействия формированию электрического заряда в атмосфере. Однако описанные разработки в области атмосферной электроэнергетики не включают вызова молний — провоцирования грозовых разрядов с целью получения энергии, экспериментально опробованного Николой Тесла еще в конце XIX столетия. Работа в данном направлении может оказаться наиболее перспективной из всей группы исследований атмосферной электроэнергетики.

Критики опытов профессора Галембекка по получению «влажного электричества» подчеркивают, что данный способ может дать немного энергии. Но вся группа (как известных, так и не публичных) работ в области атмосферной электроэнергетики может оказаться куда более значительной по результатам. Постановка на службу человечеству энергии молний и атмосферного электричества вообще способна надолго и без гигантских затрат решить энергетический вопрос, как минимум дав один из основных источников электроэнергии недалекого будущего. Тесла говорил, что энергия окружает нас повсюду, и вопрос состоит лишь в том, как ее взять. Умение вызывать грозовые разряды и аккумулировать полученное электричество откроет новые возможности экономического развития мира, вновь сделав энергию дешёвой. Накапливаемая в атмосфере планеты энергия обладает колоссальным потенциалом.

В конце XIX — начале XX века Тесла попытался экспериментально получить доступ к «неиссякаемому источнику энергии неба». Работы в этой области шли совместно с исследованиями по беспроводной передаче электричества. Финансовые затруднения вынудили ученого свернуть работу, хотя он много лет безуспешно пытался найти поддержку своих исследований. Известным результатом его экспериментальной работы оказался вызов в Колорадо молнии, что привело к аварии на местной электростанции в результате возникновения короткого замыкания. В современных условиях при наличии государственной поддержки исследований по «приручению» атмосферного электричества такая технология способна оказаться чрезвычайно продуктивной, что в конечном итоге должно помочь технологическому преодолению энергетического кризиса.

Атмосферная электроэнергетика может в ближайшие десятилетия стать ведущим направлением в группе технологий, призванных обновить энергетику. Соответствующие работы сейчас активно ведутся в Массачусетском технологическом институте (Massachusetts Institute of Technology — MIT), есть также и российские разработки. Бесспорным является революционный характер исследований в области получения атмосферного электричества. При этом источник энергии зачастую оценивается как почти безграничный, а затраты по ее получению должны оказаться минимальными.

7.5 КОРТЭЖ — технология

Группой московских инженеров прорабатывается возможность производства электроэнергии на основе так называемой динамической сверхпроводимости. Эффект сверхпроводимости возникает при вращении металлического диска на высоких скоростях. Предполагается, что при вращении электроны диска концентрируются по периметру диска, что позволяет пропускать в этом месте очень большой ток. Сконцентрированные электроны образуют короткозамкнутый тороидальный электронный жгут (КОРТЭЖ). Благодаря этому жгуту ток отделяется от металла диска и не нагревает его, что и обеспечивает возможность пропускать электроток большой величины. Большой ток, в свою очередь, позволяет получать сверхсильное магнитное поле, которое может использоваться для генерации электроэнергии.

По данной технологии проведено большое количество опытов на экспериментальной установке, отработаны основные способы использования эффекта электронного жгута в качестве средства генерации энергии. Осталось проверить работоспособность технологии на полупромышленном образце. Остановка на данной фазе связана с финансовыми проблемами этого проекта.

7.5. E-Cat и «холодный синтез»

Изобретение Андреа Росси автономного реактора E-Cat открывает эпоху революции в энергетике. Демонстрация готовой работающей установки дает основания надеяться на запуск серийного производства аппаратов.

В конце октября 2011 года группа итальянских ученых во главе с Андреа Росси представила и протестировала в Болонье революционный автономный реактор, источник «бесплатного тепла» — «катализатор энергии» (E-Cat). Принцип действия его строится на использовании в качестве топлива никеля и водорода, в процессе взаимодействия которых выделяется тепловая энергия и образуется медь. В основе функционирования устройства лежит низкоэнергетическая ядерная реакциям (LENR). При работе установки Росси мощностью в 1000 кВт в течении шести месяцев будет расходоваться только 10 кг никеля и 18 кг водорода. Создатели подчеркивают: реактор обеспечивает выработку абсолютно чистой энергии, количество которой не ограничено. Ее производство возможно в промышленных масштабах, а сами установки планируется предоставлять в аренду.

Выпуск генераторов Росси, вероятно, начнется в США. Предполагается, что цена «домашнего» E-Cat составит 400-500 долларов, что не должно помешать изобретению окупится в ходе всего одного года. Перезарядка генераторов и их техническое обслуживание не будет дорогим. В отличие от автономных генераторов для промышленности, экономичные «домашние» агрегаты нельзя будет перестроить для применения в индустрии . Интерес в мире к работе итальянского ученого все более возрастает.

Длительное время мировая экономика обходилась без инноваций в энергетике. Прогресс в информационной сфере 1970-2000-х годов соединялся с застоем в области энергетики. Так называемые «альтернативные источники» не создавали реальной замены сжиганию углеводородного топлива. Биотопливо, ветровые и солнечные генераторы не ставили под удар старую энергетику. Разработки революционных технологий в энергетике, для получения атмосферного электричества или экономичной автономной генерации, блокировались правительствами и корпорациями. Появление реактора Росси пробивает брешь в обороне консерваторов. В ближайшие годы появятся и другие изобретения, радикально снижающие себестоимость энергии.

mob_info